Analytical and Computational Studies of High-Speed Flows in Single-and Multi-Phase Reacting Media
单相和多相反应介质中高速流动的分析和计算研究
基本信息
- 批准号:0312040
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-08-01 至 2006-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Computational and analytical studies of chemically reacting flows in exploding and detonating media are proposed. Of primary interest are condensed-phase energetic materials, typified by a heterogeneous microstructure consisting of solid grains of the explosive component held together by an inert binder. Such materials are morphologically, thermomechanically, and chemically complex. There is a vast disparity between the microscales at which energy is released during combustion, and the scale of a typical explosive device. Accordingly, existing mathematical models are approximate, describe averaged behavior, and incorporate either implicitly or explicitly a certain degree of homogenization. The proposed work focuses on two available continuum descriptions. The first, called ignition and growth, treats the explosive as a homogeneous mixture of reacting and product species. The second employs a multiphase approach and considers the reactants and products as two distinct phases. At a fundamental level both mathematical models are systems of hyperbolic PDEs, consisting of the balance laws of mass, momentum and energy, supplemented by prescriptions for the reaction rates and the equations of state. Application of appropriate mechanical and/or thermal stimulus leads to the formation of detonation waves. The objective of the proposed research is the elucidation, via a mathematical and computational study, of the mechanisms that underlie the evolutionary behavior of these waves. We shall focus on their birth, propagation, interaction with disturbances, and response to changes in the configuration of the confining boundary. Traditionally, the major emphasis in explosives science has been to initiate a detonation reliably and predictably. That, in turn, has required a precise knowledge of the kind and strength of stimulus usually a mechanical impulse), and the associated time and distance, needed for the initial shock to transition into a self-sustained detonation. Mathematical models have indeed been employed with that end in mind. This study, however, proposes that these models be investigated systematically in a broader context. Such an exercise is absolutely essential if one is to rationally assess the safety of devices that employ high-energy explosives. This is because in case of an accident, the stimulus is unlikely to be in the form of a strong, planar shock applied with precision. For such a case, one must discover how the explosive will respond when subjected to a weak compressive pulse or thermal gradient. We intend to do so by posing and investigating suitable problems for the two classes of mathematical models. Such a detailed understanding should pave the way for the rational derivation of further reductions or approximations that are better suited for engineering computations and design.
对爆炸和爆轰介质中的化学反应流动进行了计算和分析研究。人们最感兴趣的是凝聚相含能材料,其典型特征是由爆炸成分的固体颗粒通过惰性粘结剂结合在一起的非均质微结构。这种材料在形态、热机械和化学方面都很复杂。在燃烧过程中释放能量的微尺度与典型爆炸装置的尺度之间存在着巨大的差距。因此,现有的数学模型是近似的,描述了平均行为,并隐含或显式地包含了一定程度的同质化。拟议的工作集中在两个可用的连续统描述上。第一种称为点火和增长,将炸药视为反应和产物物种的均匀混合物。第二种方法采用多相方法,将反应物和产物视为两个不同的阶段。在基本层面上,这两个数学模型都是双曲偏微分方程组,由质量、动量和能量的平衡定律组成,辅之以反应速率和状态方程的规定。施加适当的机械和/或热刺激会导致爆震波的形成。这项拟议的研究的目的是通过数学和计算研究阐明这些波的进化行为背后的机制。我们将集中于它们的产生、传播、与扰动的相互作用以及对限制边界形状变化的响应。传统上,炸药科学的主要重点一直是可靠和可预测地引爆。这反过来又需要准确了解刺激的种类和强度(通常是机械脉冲),以及相关的时间和距离,这是初始冲击转变为自我维持爆炸所需的。数学模型的使用确实考虑到了这一点。然而,这项研究建议在更广泛的背景下系统地研究这些模型。如果要理性地评估使用高能炸药的装置的安全性,这种做法是绝对必要的。这是因为,在发生事故的情况下,刺激不太可能是精确施加的强烈平面冲击的形式。在这种情况下,人们必须知道炸药在受到微弱的压缩脉冲或温度梯度时会有什么反应。我们打算通过提出和研究适用于这两类数学模型的问题来做到这一点。这种详细的理解应该为更适合工程计算和设计的进一步简化或近似的合理推导铺平道路。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Donald Schwendeman其他文献
A theory of pad conditioning for chemical-mechanical polishing
- DOI:
10.1023/b:engi.0000042116.09084.00 - 发表时间:
2004-09-01 - 期刊:
- 影响因子:1.400
- 作者:
Leonard J. Borucki;Thomas Witelski;Colin Please;Peter R. Kramer;Donald Schwendeman - 通讯作者:
Donald Schwendeman
Donald Schwendeman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Donald Schwendeman', 18)}}的其他基金
Collaborative Research: Expanding Links with Industry through Collaborative Research and Education in Applied Mathematics
合作研究:通过应用数学合作研究和教育扩大与工业界的联系
- 批准号:
1261591 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: The MPI Workshop and GSMM Camp
合作研究:MPI 研讨会和 GSMM 营
- 批准号:
1153953 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Standard Grant
Models and Adaptive Methods for Compressible Multi-Material Reactive Flow
可压缩多材料反应流的模型和自适应方法
- 批准号:
1016188 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Special Meetings: The MPI Workshop
合作研究:特别会议:MPI 研讨会
- 批准号:
0753071 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
Graduate Education and Development: The GSMM Camp and MPI Workshop
研究生教育和发展:GSMM 营和 MPI 研讨会
- 批准号:
0707280 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Standard Grant
Multiscale Modeling and Computation of Multiphase Energetic Materials
多相含能材料的多尺度建模与计算
- 批准号:
0609874 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Standard Grant
Rensselaer Graduate Student Mathematical Modeling Camp
伦斯勒研究生数学建模营
- 批准号:
0308571 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Standard Grant
University - Industry Cooperative Research Programs in the Mathematical Sciences: Rensselaer-Rockwell Senior Research Fellowship
数学科学领域的大学-工业合作研究项目:伦斯勒-罗克韦尔高级研究奖学金
- 批准号:
9705051 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Presidential Young Investigator Award
数学科学:总统青年研究员奖
- 批准号:
9157546 - 财政年份:1991
- 资助金额:
-- - 项目类别:
Continuing Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Experimental and Computational Studies of Biomolecular Topology
职业:生物分子拓扑的实验和计算研究
- 批准号:
2336744 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Computational Studies of Ambient Catalytic Dinitrogen Reduction by Electropositive Metal Tetraphenolate Complexes
正电金属四酚盐配合物环境催化二氮还原的计算研究
- 批准号:
EP/X042049/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Computational Studies of Gas Adsorption in Special Nuclear Materials (SNMs).
特殊核材料(SNM)中气体吸附的计算研究。
- 批准号:
2903366 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Studentship
Computational studies of P-type ATPase ion pumps
P型ATP酶离子泵的计算研究
- 批准号:
2309048 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Computational Studies of Solid Electrolytes
固体电解质的计算研究
- 批准号:
2242959 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Computational Studies of Selective C-H Functionalization Reactions
选择性 C-H 官能化反应的计算研究
- 批准号:
2247505 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Pioneering Theoretical and Computational Studies for Elucidating Dynamic Disorder in Condensed-Phase Dynamics
阐明凝聚相动力学中动态无序的开创性理论和计算研究
- 批准号:
23K17361 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Computational and Experimental Studies Towards Ideal Organic Semiconductors for Perovskite Solar Cells
用于钙钛矿太阳能电池的理想有机半导体的计算和实验研究
- 批准号:
2308895 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Computational Studies to Improve Understanding and Outcomes of Covalent Labeling Mass Spectrometry Measurements
提高对共价标记质谱测量的理解和结果的计算研究
- 批准号:
2247002 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
COMPUTATIONAL STUDIES OF MAIN GROUP CLUSTERS AS CATALYSTS IN ORGANIC SYNTHESIS
主族簇作为有机合成催化剂的计算研究
- 批准号:
2905622 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship














{{item.name}}会员




