ITR: A New Data Model and Extensible Software for Predictive Chemical Kinetics
ITR:用于预测化学动力学的新数据模型和可扩展软件
基本信息
- 批准号:0312359
- 负责人:
- 金额:$ 42.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-09-01 至 2006-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Project SummaryThis project develops a completely new data model for chemical kinetics and corresponding extensible software, including graphical user interfaces and appropriate examples, that make it feasible to predict the rates and products of complex chemical processes. Many of the difficult tasks now performed manually by kineticists are automated, including the determination of which intermediates and reactions should be included in a simulation (based on numerical significance). In the new data model, parameters are required only for each type of functional group, rather than for each chemical species, and the xml format encourages users to document information on the provenance and uncertainty of each parameter. Because there are many fewer types of functional groups than chemical species, the new data model is compact enough that a human can check all the parameters individually. Furthermore, the parameters are classified in a scheme that encourages comparisons between related functional groups and the identification of outliers. To jump-start adoption of the new data model and software, a large, well-documented set of rate and thermochemical parameters is provided, as well as software appropriate for modeling a wide range of thermal and oxidative chemistry of hydrocarbons; new software tools for manipulating, comparing, and analyzing large-scale chemical kinetic simulations; and many examples.Chemical kinetic simulations of real-world processes are both extremely valuable, and extremely data intensive. For example, a model for gasoline combustion chemistry widely used to help design low-emission engines involves over 20,000 numerical parameters as inputs, and even this large set is certainly incomplete. The existing data model for chemical kinetics, created more than 20 years ago, was never designed to handle this level of complexity. It is adequate for conventional small a posteriori kinetic models, but not appropriate for predicting the chemical kinetics of technologically important systems, especially those involving complex mixtures. Accurate, large-scale simulation of reacting mixtures requires a whole new paradigm for how engineers, chemists, and environmental scientists interact with complex chemistry modeling software, and how they document the many assumptions and uncertainties that underlie the simulations. By reducing the size of the required input, and making the connection between the transferable fundamental chemistry and simulation results more transparent, this new approach will make a priori chemical kinetic simulation accessible to a much broader range of scientists and engineers. This will revolutionize the field of kinetics, open up significant new possibilities in the design of chemical products and processes, and provide a firmer basis for business and regulatory decision-making. A variety of outreach and educational activities are included. To encourage current practitioners of kinetics to take advantage of the new IT technology, the new methodology is demonstrated at conferences and promoted using existing Web collaboratories. It is also necessary to change the way kinetics is taught to encourage new engineers and scientists to embrace the new paradigm; to this end, new teaching modules are developed to introduce chemical kinetics to undergraduate and graduate students in a variety of disciplines including chemistry, chemical engineering, mechanical engineering, and environmental science.
该项目开发了一个全新的化学动力学数据模型和相应的可扩展软件,包括图形用户界面和适当的示例,使其能够预测复杂化学过程的速率和产物。 许多现在由动力学家手动完成的困难任务都是自动化的,包括确定哪些中间体和反应应该包括在模拟中(基于数值意义)。在新的数据模型中,参数只需要用于每种类型的官能团,而不是每种化学物质,xml格式鼓励用户记录每个参数的来源和不确定性信息。 由于官能团的类型比化学物种少得多,新的数据模型足够紧凑,人类可以单独检查所有参数。 此外,参数分类的计划,鼓励相关功能组之间的比较和识别离群值。 为了迅速采用新的数据模型和软件,提供了大量的、有据可查的速率和热化学参数,以及适用于模拟烃的各种热化学和氧化化学的软件;用于操纵、比较和分析大规模化学动力学模拟的新软件工具;实际过程的化学动力学模拟是非常有价值的,并且是非常数据密集的。 例如,广泛用于帮助设计低排放发动机的汽油燃烧化学模型涉及超过20,000个数值参数作为输入,即使是这么大的一组也肯定是不完整的。 20多年前创建的现有化学动力学数据模型从未设计用于处理这种复杂程度。 它是足够的传统的小后验动力学模型,但不适合预测的化学动力学的技术重要的系统,特别是那些涉及复杂的混合物。 精确、大规模的反应混合物模拟需要一个全新的范式,来指导工程师、化学家和环境科学家如何与复杂的化学建模软件进行交互,以及他们如何记录模拟背后的许多假设和不确定性。通过减少所需输入的大小,并使可转移的基础化学和模拟结果之间的联系更加透明,这种新方法将使更广泛的科学家和工程师可以使用先验化学动力学模拟。 这将彻底改变动力学领域,为化学产品和工艺的设计开辟重要的新可能性,并为商业和监管决策提供更坚实的基础。 包括各种外联和教育活动。 为了鼓励目前的从业者的动力学,以利用新的IT技术,新的方法是在会议上展示,并促进使用现有的Web协作。 也有必要改变动力学的教学方式,以鼓励新的工程师和科学家接受新的范式;为此,开发了新的教学模块,向包括化学,化学工程,机械工程和环境科学在内的各种学科的本科生和研究生介绍化学动力学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Green其他文献
Pneumocystis carinii pneumonia complicated by lymphadenopathy and pneumothorax.
卡氏肺囊虫肺炎并发淋巴结肿大和气胸。
- DOI:
10.1001/archinte.1988.00380120099020 - 发表时间:
1988 - 期刊:
- 影响因子:0
- 作者:
Bekele Afessa;William Green;Wayne A. Williams;Nathaniel G. Hagler;Roma V. Gumbs;Robert L. Hackney;Winston Frederick - 通讯作者:
Winston Frederick
Dimensions and location of high-involvement management:fresh evidence from the UK Commission's 2011 Employer Skills Survey
高参与度管理的维度和位置:来自英国委员会 2011 年雇主技能调查的新证据
- DOI:
10.1111/1748-8583.12064 - 发表时间:
2015 - 期刊:
- 影响因子:5.5
- 作者:
S. Wood;Sandra Nolte;M. Burridge;Daniela Rudloff;William Green - 通讯作者:
William Green
Researching big IT in the UK National Health Service: A systematic review of theory-based studies
英国国家卫生服务体系中大型信息技术的研究:基于理论的研究的系统综述
- DOI:
10.1016/j.ijmedinf.2024.105395 - 发表时间:
2024-05-01 - 期刊:
- 影响因子:4.100
- 作者:
Colin Price;Olga Suhomlinova;William Green - 通讯作者:
William Green
Twenty-five years of national health IT: exploring strategy, structure, and systems in the English NHS
国家卫生信息技术二十五年:探索英国 NHS 的战略、结构和系统
- DOI:
10.1093/jamia/ocy162 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Colin Price;William Green;Olga Suhomlinova - 通讯作者:
Olga Suhomlinova
Shaping success through creative failure: A historical sensemaking analysis of the computerisation of the UK financial market
通过创造性的失败塑造成功:英国金融市场计算机化的历史意义分析
- DOI:
10.1080/00076791.2019.1686819 - 发表时间:
2019 - 期刊:
- 影响因子:1.1
- 作者:
Marta Gasparin;William Green;C. Schinckus - 通讯作者:
C. Schinckus
William Green的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Green', 18)}}的其他基金
Reinvention Center Conference 2010: Tradition, Innovation, and Creativity: Undergraduate Learning in the 21st Century
2010 年重塑中心会议:传统、创新和创造力:21 世纪的本科生学习
- 批准号:
1056854 - 财政年份:2010
- 资助金额:
$ 42.92万 - 项目类别:
Standard Grant
Education, Innovation, and Discovery: The Distinctive Promise of the American Research University
教育、创新和发现:美国研究型大学的独特承诺
- 批准号:
0823387 - 财政年份:2008
- 资助金额:
$ 42.92万 - 项目类别:
Standard Grant
Collaborative Research: Cyberinfrastructure and Research Facilities: Process Informatics for Chemical Reaction Systems
合作研究:网络基础设施和研究设施:化学反应系统的过程信息学
- 批准号:
0535604 - 财政年份:2005
- 资助金额:
$ 42.92万 - 项目类别:
Continuing Grant
Computer Science, Engineering, and Mathematics Scholarship Fellows Program
计算机科学、工程和数学奖学金研究员计划
- 批准号:
0094212 - 财政年份:2001
- 资助金额:
$ 42.92万 - 项目类别:
Standard Grant
Collaborative Research: Microbial Mediation of Trace Metal Cycling in Four Stratified Antarctic Lakes
合作研究:南极四个分层湖泊中微量金属循环的微生物介导
- 批准号:
9814837 - 财政年份:1999
- 资助金额:
$ 42.92万 - 项目类别:
Continuing Grant
CAREER: Predictive Chemical Kinetics: Reaction Rate Estimation and Validation
职业:预测化学动力学:反应速率估计和验证
- 批准号:
9875335 - 财政年份:1999
- 资助金额:
$ 42.92万 - 项目类别:
Standard Grant
Collodial Ferrofluids as Reactive Extractants for Sulfur Removal from Gasoline and Fuel Oils
胶体铁磁流体作为反应萃取剂用于汽油和燃油中的脱硫
- 批准号:
9817221 - 财政年份:1998
- 资助金额:
$ 42.92万 - 项目类别:
Continuing Grant
Liberal Education in a Technological Age: The Education of aScientifically-Literate Society
技术时代的通识教育:具有科学素养的社会的教育
- 批准号:
9652145 - 财政年份:1996
- 资助金额:
$ 42.92万 - 项目类别:
Standard Grant
Acetylcholine Receptor Folding and Oligomerization
乙酰胆碱受体折叠和寡聚化
- 批准号:
9319656 - 财政年份:1994
- 资助金额:
$ 42.92万 - 项目类别:
Continuing Grant
Collaborative Research: Microbial and Geochemical Controls on Metal Cycling in Lake Vanda
合作研究:万代湖金属循环的微生物和地球化学控制
- 批准号:
9319044 - 财政年份:1994
- 资助金额:
$ 42.92万 - 项目类别:
Continuing Grant
相似海外基金
Data Driven Discovery of New Catalysts for Asymmetric Synthesis
数据驱动的不对称合成新催化剂的发现
- 批准号:
DP240100102 - 财政年份:2024
- 资助金额:
$ 42.92万 - 项目类别:
Discovery Projects
Dark Data from the White Continent: New Light on Five Decades of Vertebrate Paleontology Collections from the Triassic Fremouw Formation of Antarctica
来自白色大陆的暗数据:对南极洲三叠纪 Fremouw 组的五个十年的脊椎动物古生物学收藏的新认识
- 批准号:
2313242 - 财政年份:2024
- 资助金额:
$ 42.92万 - 项目类别:
Standard Grant
Defining new asthma phenotypes using high-dimensional data
使用高维数据定义新的哮喘表型
- 批准号:
2901112 - 财政年份:2024
- 资助金额:
$ 42.92万 - 项目类别:
Studentship
Electron momentum spectroscopy of radiosensitizers New benchmark data for assessing the theoretical models
放射增敏剂的电子动量谱 用于评估理论模型的新基准数据
- 批准号:
EP/Y022297/1 - 财政年份:2024
- 资助金额:
$ 42.92万 - 项目类别:
Research Grant
CDS&E: Multiscale Data Intensive Simulation and Modeling of Microemulsion Boiling: A New Paradigm for Boiling Enhancement
CDS
- 批准号:
2347627 - 财政年份:2024
- 资助金额:
$ 42.92万 - 项目类别:
Standard Grant
The Twelfth (12th) Workshop on Meteorological Sensitivity Analysis and Data Assimilation; Lake George, New York; May 19-24, 2024
第十二届(十二届)气象敏感性分析与资料同化研讨会;
- 批准号:
2330336 - 财政年份:2024
- 资助金额:
$ 42.92万 - 项目类别:
Standard Grant
NewDataMetrics: Econometrics for New Data: Theory, Methods, and Applications
NewDataMetrics:新数据的计量经济学:理论、方法和应用
- 批准号:
EP/Z000335/1 - 财政年份:2024
- 资助金额:
$ 42.92万 - 项目类别:
Research Grant
New mathematical approaches to learn the equations of life from noisy data
从噪声数据中学习生命方程的新数学方法
- 批准号:
DP230100025 - 财政年份:2024
- 资助金额:
$ 42.92万 - 项目类别:
Discovery Projects
CAREER: New Frontiers of Private Learning and Synthetic Data
职业:私人学习和合成数据的新领域
- 批准号:
2339775 - 财政年份:2024
- 资助金额:
$ 42.92万 - 项目类别:
Continuing Grant
A new data-driven approach to bring humanity into virtual worlds with computer vision
一种新的数据驱动方法,通过计算机视觉将人类带入虚拟世界
- 批准号:
23K28129 - 财政年份:2024
- 资助金额:
$ 42.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




