CAREER: New Frontiers of Private Learning and Synthetic Data

职业:私人学习和合成数据的新领域

基本信息

  • 批准号:
    2339775
  • 负责人:
  • 金额:
    $ 68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-03-01 至 2029-02-28
  • 项目状态:
    未结题

项目摘要

The vast collection of detailed personal data offers significant benefits to researchers, companies, and policymakers. To protect individual privacy, many organizations, both from the public and private sectors, have adopted differential privacy as a rigorous privacy measure. However, recent deployments of differential privacy have revealed key research gaps. First, much of the existing theoretical work in differential privacy focuses on worst-case analyses, which often lead to overly pessimistic results and fail to inform algorithm design in practice. Despite recent advancements, differentially private algorithms for machine learning and data sharing are still not widely adopted technologies. Lastly, the lack of comprehensive tools for privacy risk assessment makes it difficult for practitioners to evaluate the effectiveness of differential privacy and to determine appropriate privacy risk parameters. This project aims to address these challenges in differential privacy by expanding the repertoire of privacy-preserving algorithms and developing auditing mechanisms to assess the privacy protection these algorithms provide.The research focuses on two fundamental and closely related problems: private learning and private synthetic data. In private learning, the goal is to learn accurate machine learning models using sensitive data with differential privacy guarantees. In private synthetic data, the goal is to differentially privately generate a synthetic dataset that preserves important statistical trends of the sensitive dataset. The project advances the frontiers of these two problems with three research thrusts. The first thrust develops a theoretical framework that goes beyond pessimistic worst-case analyses to better capture practical scenarios and guide algorithm design. The second thrust designs practical algorithms that are informed by theoretical principles and empirical structures of the problems in practice. The third focuses on privacy attacks and auditing mechanisms that evaluate the privacy risks of learning and synthetic data algorithms. The project also includes a comprehensive educational and outreach program, providing research opportunities for students at different educational levels and developing new courses and educational materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大量收集的详细个人数据为研究人员、公司和政策制定者带来了巨大的好处。为了保护个人隐私,许多公共和私营部门的组织都采用了差异隐私作为严格的隐私措施。然而,最近的差异隐私部署揭示了关键的研究空白。首先,现有的差异隐私理论工作主要集中在最坏情况下的分析,这往往会导致过于悲观的结果,并未能在实践中为算法设计提供信息。尽管最近取得了进展,但用于机器学习和数据共享的差异化私有算法仍然没有被广泛采用。最后,由于缺乏全面的隐私风险评估工具,从业人员难以评估差异隐私的有效性,并确定适当的隐私风险参数。 该项目旨在通过扩展隐私保护算法的库和开发审计机制来评估这些算法提供的隐私保护来解决差异隐私中的这些挑战。研究重点是两个基本且密切相关的问题:私人学习和私人合成数据。在私人学习中,目标是使用具有差异隐私保证的敏感数据来学习准确的机器学习模型。在私有合成数据中,目标是以差异化方式私下生成保留敏感数据集的重要统计趋势的合成数据集。该项目通过三个研究方向推进了这两个问题的前沿。第一个推力开发了一个理论框架,超越了悲观的最坏情况分析,以更好地捕捉实际场景和指导算法设计。第二个推力设计实用的算法,在实践中的问题的理论原则和经验结构通知。第三个重点是隐私攻击和审计机制,评估学习和合成数据算法的隐私风险。该项目还包括一个全面的教育和推广计划,为不同教育水平的学生提供研究机会,并开发新的课程和教育材料。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhiwei Steven Wu其他文献

Logarithmic Query Complexity for Approximate Nash Computation in Large Games
大型游戏中近似纳什计算的对数查询复杂度
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    P. Goldberg;Francisco Javier Marmolejo;Zhiwei Steven Wu
  • 通讯作者:
    Zhiwei Steven Wu
Inducing Approximately Optimal Flow Using Truthful Mediators
使用真实的中介者诱导近似最佳的流动
Competing Bandits: The Perils of Exploration Under Competition
强盗竞争:竞争中探索的危险
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guy Aridor;Y. Mansour;Aleksandrs Slivkins;Zhiwei Steven Wu
  • 通讯作者:
    Zhiwei Steven Wu
Provable Multi-Party Reinforcement Learning with Diverse Human Feedback
可证明的多方强化学习与不同的人类反馈
  • DOI:
    10.48550/arxiv.2403.05006
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Huiying Zhong;Zhun Deng;Weijie J. Su;Zhiwei Steven Wu;Linjun Zhang
  • 通讯作者:
    Linjun Zhang
Structured Linear Contextual Bandits: A Sharp and Geometric Smoothed Analysis
结构化线性上下文强盗:锐利且几何平滑的分析

Zhiwei Steven Wu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhiwei Steven Wu', 18)}}的其他基金

Collaborative Research: SaTC: CORE: Medium: Private Model Personalization
协作研究:SaTC:核心:媒介:私人模型个性化
  • 批准号:
    2232693
  • 财政年份:
    2023
  • 资助金额:
    $ 68万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Foundations for the Next Generation of Private Learning Systems
协作研究:SaTC:核心:小型:下一代私人学习系统的基础
  • 批准号:
    2120611
  • 财政年份:
    2021
  • 资助金额:
    $ 68万
  • 项目类别:
    Standard Grant
FAI: Advancing Fairness in AI with Human-Algorithm Collaborations
FAI:通过人类算法合作促进人工智能的公平性
  • 批准号:
    2125692
  • 财政年份:
    2020
  • 资助金额:
    $ 68万
  • 项目类别:
    Standard Grant
FAI: Advancing Fairness in AI with Human-Algorithm Collaborations
FAI:通过人类算法合作促进人工智能的公平性
  • 批准号:
    1939606
  • 财政年份:
    2020
  • 资助金额:
    $ 68万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: New Frontiers in Continuous-time Open Quantum Systems
职业:连续时间开放量子系统的新领域
  • 批准号:
    2238766
  • 财政年份:
    2023
  • 资助金额:
    $ 68万
  • 项目类别:
    Continuing Grant
CAREER: New Frontiers in Graph Generation
职业:图生成的新领域
  • 批准号:
    2239869
  • 财政年份:
    2023
  • 资助金额:
    $ 68万
  • 项目类别:
    Continuing Grant
CAREER: New Frontiers in the Dynamics of Topological Solitons
职业:拓扑孤子动力学的新领域
  • 批准号:
    2235233
  • 财政年份:
    2023
  • 资助金额:
    $ 68万
  • 项目类别:
    Continuing Grant
CAREER: New Frontiers in Bayesian Deep Learning
职业:贝叶斯深度学习的新领域
  • 批准号:
    2145492
  • 财政年份:
    2022
  • 资助金额:
    $ 68万
  • 项目类别:
    Continuing Grant
CAREER: New Frontiers in Quantum Protocols, Operator Algebras, and Property Testing
职业:量子协议、算子代数和属性测试的新领域
  • 批准号:
    2144219
  • 财政年份:
    2022
  • 资助金额:
    $ 68万
  • 项目类别:
    Continuing Grant
CAREER: New Frontiers In Large-Scale Spatiotemporal Data Analysis
职业:大规模时空数据分析的新领域
  • 批准号:
    2146343
  • 财政年份:
    2022
  • 资助金额:
    $ 68万
  • 项目类别:
    Continuing Grant
CAREER: New Analytic Frontiers for Symmetric Cryptography
职业:对称密码学的新分析前沿
  • 批准号:
    2046540
  • 财政年份:
    2021
  • 资助金额:
    $ 68万
  • 项目类别:
    Continuing Grant
CAREER: New Frontiers for Frobenius, Singularity Theory, Differential Operators, and Local Cohomology
职业生涯:弗罗贝尼乌斯、奇点理论、微分算子和局部上同调的新领域
  • 批准号:
    1945611
  • 财政年份:
    2020
  • 资助金额:
    $ 68万
  • 项目类别:
    Continuing Grant
CAREER: New Frontiers in Computing on Private Data
职业:私有数据计算的新领域
  • 批准号:
    1942789
  • 财政年份:
    2020
  • 资助金额:
    $ 68万
  • 项目类别:
    Continuing Grant
CAREER: New Frontiers in Time Series Analysis
职业:时间序列分析的新领域
  • 批准号:
    1455172
  • 财政年份:
    2015
  • 资助金额:
    $ 68万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了