Shape Exploration for Medical Applications --- From Representation, Correspondence, Deformation to Image Segmentation
医学应用的形状探索——从表示、对应、变形到图像分割
基本信息
- 批准号:0312861
- 负责人:
- 金额:$ 37.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-09-01 至 2007-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Project Summary (Song Wang) EIA-0312861Song WhangUSC Research Foundation The proposed research is to develop an integrated and practical framework for shape modeling and use it to achieve more reliable segmentation of medical images. This research is motivated by the fact that reliable extraction, representation, and incorporation of some prior shape information can greatly reduce the segmentation error resulting from image noise. Three important problems will be addressed and integrated to effectively explore shape information for medical image segmentation: shape representation, shape correspondence, and shape deformation. The shape representation is to compactly describe a shape in terms of a set of landmark points. The shape correspondence is to establish landmark-based correspondence among a set of shape samples. The shape deformation is to first construct a shape template that captures representative shape characteristics of a particular object class, and then use it to delineate an object of the same class from a new image. Intellectual Merits: This research studies the shape modeling method from a unique systematic perspective. While previous researches usually focus on a particular problem in shape modeling, we will investigate all three interrelated key problems, i.e., shape representation, shape correspondence, and shape deformation, in an integrated and unified framework, specifically for medical image segmentation. Under this unified framework, we develop novel methods to address most important issues in each of these three problems. In the shape representation, we will incorporate our resolution-independent feature extraction method to estimate key shape parameters such as position, tangent direction, and curvature more accurately. This will provide a representation format that is accurate, compact, and flexible in describing a group of shape instances. In the shape correspondence, we will develop global and local correspondence methods to choose landmarks based on the following criteria: (1) simple shape representation, (2) small representation error, and (3) optimal inter-shape landmark correspondence. An advanced network-flow technique will be used to integrate these three measures into a new unified formulation. In the shape deformation, we will develop effective shape-learning techniques based on a group of well-corresponded training samples. The techniques employ more general and accurate probability distribution models than simple Gaussian distributions. Based on the models, we will further develop our shape deformation method to deal with important issues like algorithm robustness and topology preservation. Broad Impacts: Fast growth of medical imaging industry provides us tremendous amount of data in many forms like MRI, CT, PET, cryosection, microscopic, etc. It is urgent to develop advanced information technology to convert those medical data into useful information. Among them, geometric shape information is of particular importance as they are widely used in clinical diagnoses. The proposed research will greatly facilitate the shape information exploration from medical images and provide physician and radiologists new and powerful computational tools. In the long term, this research will further intensify the current efforts to bridge the gap between information technology and medical applications. Furthermore, the proposed research can be applied to many other applications like video tracking and biometrics that shares the same problems as in shape exploration from medical images. This research also provides many educational contributions. We will integrate the medical image processing into a series of image processing and computer vision courses in the University of South Carolina (USC). This research will also actively contribute to the K-12 education in the state by assisting the NSF Bridges for Engineering Education Program awarded to the University and participating in the summer mentor program by the South Carolina Governor's School for Science and Mathematics. Biomedical engineering has been selected as one of three main focus areas for research at USC. Thus, our research effort will directly contribute to the university wide efforts. In particular, our effort can be integrated with the neuro-imaging initiative at the Psychology Department and the new Center for Colon Cancer Research.
项目摘要(Song Wang)EIA-0312861 Song WhangUSC研究基金会拟议的研究是开发一个集成的和实用的形状建模框架,并使用它来实现更可靠的医学图像分割。这项研究的动机是一个事实,可靠的提取,表示,并结合一些先验形状信息可以大大减少分割误差所造成的图像噪声。三个重要的问题将被解决和整合,以有效地探索形状信息的医学图像分割:形状表示,形状对应,形状变形。 形状表示是根据一组界标点来完整地描述形状。形状对应是在一组形状样本之间建立基于地标的对应。形状变形是首先构造形状模板,该形状模板捕获特定对象类的代表性形状特征,然后使用它从新图像中描绘出同一类的对象。学术价值:本研究以独特的系统观点,研究形体造型方法。虽然以前的研究通常集中在形状建模中的一个特定问题,但我们将研究所有三个相互关联的关键问题,即,形状表示、形状对应和形状变形,在集成和统一的框架中,专门用于医学图像分割。 在这个统一的框架下,我们开发了新的方法来解决这三个问题中最重要的问题。 在形状表示中,我们将结合我们的分辨率无关的特征提取方法来更准确地估计关键形状参数,如位置,切线方向和曲率。这将提供一种在描述一组形状实例时准确、紧凑且灵活的表示格式。在形状对应中,我们将开发全局和局部对应方法,以基于以下标准选择地标:(1)简单的形状表示,(2)小的表示误差,以及(3)最佳的形状间地标对应。 一个先进的网络流技术将被用来整合这三个措施到一个新的统一制定。在形状变形中,我们将基于一组对应良好的训练样本开发有效的形状学习技术。 这些技术采用比简单的高斯分布更一般和准确的概率分布模型。基于这些模型,我们将进一步发展我们的形状变形方法,以处理算法鲁棒性和拓扑保持等重要问题。 广泛影响:医学影像行业的快速发展为我们提供了大量的数据,如MRI、CT、PET、冷冻切片、显微镜等,迫切需要发展先进的信息技术将这些医学数据转化为有用的信息。其中,几何形状信息是特别重要的,因为它们被广泛用于临床诊断。该研究将极大地促进从医学图像中探索形状信息,并为医生和放射科医生提供新的和强大的计算工具。从长远来看,这项研究将进一步加强目前的努力,弥合信息技术和医疗应用之间的差距。 此外,所提出的研究可以应用于许多其他应用,如视频跟踪和生物识别,这些应用与医学图像的形状探索有相同的问题。这项研究也提供了许多教育贡献。 我们将把医学图像处理融入到南卡罗来纳州大学(USC)的一系列图像处理和计算机视觉课程中。 这项研究还将积极促进K-12教育在该州通过协助授予大学的NSF桥梁工程教育计划,并参加夏季导师计划由南卡罗来纳州州长的科学和数学学校。 生物医学工程已被选为南加州大学研究的三个主要重点领域之一。 因此,我们的研究工作将直接有助于整个大学的努力。特别是,我们的努力可以与心理学系和新的结肠癌研究中心的神经成像计划相结合。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Song Wang其他文献
Machine Learning-Based Water Level Prediction in Lake Erie
基于机器学习的伊利湖水位预测
- DOI:
10.3390/w12102654 - 发表时间:
2020 - 期刊:
- 影响因子:3.4
- 作者:
Qi Wang;Song Wang - 通讯作者:
Song Wang
Development of a filter-aided extraction method coupled with glycosylamine labeling to simplify and enhance high performance liquid chromatography-based N-glycan analysis.
开发过滤辅助提取方法与糖胺标记相结合,以简化和增强基于高效液相色谱的 N-聚糖分析。
- DOI:
10.1016/j.chroma.2019.04.059 - 发表时间:
2019 - 期刊:
- 影响因子:4.1
- 作者:
Yike Wu;Qiuyue Sha;Chang Wang;Bifeng Liu;Song Wang;Xin Liu - 通讯作者:
Xin Liu
A Penalty-based Method for Solving a Discrete HJB Complementarity Problem
求解离散 HJB 互补问题的基于惩罚的方法
- DOI:
10.61208/pjo-2023-011 - 发表时间:
2023 - 期刊:
- 影响因子:0.2
- 作者:
Kai Zhang;Xiaoqi Yang;Song Wang - 通讯作者:
Song Wang
Enhanced Passivation and Carrier Collection in Ink-Processed PbS Quantum Dot Solar Cells via a Supplementary Ligand Strategy
通过补充配体策略增强油墨处理 PbS 量子点太阳能电池的钝化和载流子收集
- DOI:
10.1021/acsami.0c08135 - 发表时间:
2020 - 期刊:
- 影响因子:9.5
- 作者:
Xiaokun Yang;Ji Yang;Muhammad Irfan Ullah;Yong Xia;Guijie Liang;Song Wang;Jian Zhang;Hsien-Yi Hsu;Haisheng Song;Jiang Tang - 通讯作者:
Jiang Tang
Overview of Topic Detection and Tracking of Methods for Microblogs
微博话题检测与追踪方法综述
- DOI:
10.12783/dtssehs/ecemi2020/34691 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Song Wang;Xue - 通讯作者:
Xue
Song Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Song Wang', 18)}}的其他基金
RI: Small: 3D Nonrigid Object Reconstruction from Large-Scale Unorganized 2D Images
RI:小型:从大规模无组织 2D 图像重建 3D 非刚性对象
- 批准号:
1017199 - 财政年份:2010
- 资助金额:
$ 37.09万 - 项目类别:
Standard Grant
EAGER: Grouping Features for Object Localization and Image Search
EAGER:对象定位和图像搜索的分组功能
- 批准号:
0951754 - 财政年份:2009
- 资助金额:
$ 37.09万 - 项目类别:
Standard Grant
相似海外基金
Matters about life and death: A qualitative exploration of palliative care providers’ communication about medical assistance in dying
关于生与死的问题:姑息治疗提供者关于临终医疗援助沟通的定性探索
- 批准号:
518417182 - 财政年份:2022
- 资助金额:
$ 37.09万 - 项目类别:
WBP Fellowship
A Medical Anthropological Exploration of Health Care Decision-Making
医疗保健决策的医学人类学探索
- 批准号:
1356136 - 财政年份:2014
- 资助金额:
$ 37.09万 - 项目类别:
Standard Grant
Internal Medicine Trends and Clinical Trial Exploration in the African American Community - National Medical Association 2014
非裔美国人社区的内科趋势和临床试验探索 - 国家医学协会 2014
- 批准号:
8837382 - 财政年份:2014
- 资助金额:
$ 37.09万 - 项目类别:
Exploration of post-war Japan's suicide from the viewpoint of historical sociology: the study of the semantics and the medical , economic, and legal system of suicide
从历史社会学的角度探讨战后日本的自杀:自杀的语义和医学、经济、法律制度的研究
- 批准号:
25380652 - 财政年份:2013
- 资助金额:
$ 37.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Botsha Buphelo: An exploration of medical circumcision for HIV prevention among adolescent boys in Soweto, South Africa
Botsha Buphelo:南非索韦托青春期男孩预防艾滋病毒的医学包皮环切术探索
- 批准号:
257515 - 财政年份:2011
- 资助金额:
$ 37.09万 - 项目类别:
Studentship Programs
Exploration of the functionality of regenerated tissue in aspirated medical frontal cortex using behavioural and electrophysiological techniques
使用行为和电生理学技术探索抽吸医学额叶皮层再生组织的功能
- 批准号:
334436-2006 - 财政年份:2008
- 资助金额:
$ 37.09万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Mathematical Exploration of Medical Imaging
医学影像的数学探索
- 批准号:
0633033 - 财政年份:2007
- 资助金额:
$ 37.09万 - 项目类别:
Standard Grant
Exploration of the functionality of regenerated tissue in aspirated medical frontal cortex using behavioural and electrophysiological techniques
使用行为和电生理学技术探索抽吸医学额叶皮层再生组织的功能
- 批准号:
334436-2006 - 财政年份:2007
- 资助金额:
$ 37.09万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Exploration of the functionality of regenerated tissue in aspirated medical frontal cortex using behavioural and electrophysiological techniques
使用行为和电生理学技术探索抽吸医学额叶皮层再生组织的功能
- 批准号:
334436-2006 - 财政年份:2006
- 资助金额:
$ 37.09万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Concept exploration, enhancement, and education of medical professionalism among Japanese physicians
日本医生的医疗专业精神的概念探索、提高和教育
- 批准号:
18390165 - 财政年份:2006
- 资助金额:
$ 37.09万 - 项目类别:
Grant-in-Aid for Scientific Research (B)