EAGER: Grouping Features for Object Localization and Image Search

EAGER:对象定位和图像搜索的分组功能

基本信息

  • 批准号:
    0951754
  • 负责人:
  • 金额:
    $ 7.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-15 至 2011-08-31
  • 项目状态:
    已结题

项目摘要

Numerous images on the internet call for efficient and effective image search algorithms to help users to find images that contain the object of interest. The current state-of-the-art image-search methods usually represent an object of interest as a set of features and localize the object by searching for a rectangular window that covers the desirable features. Without considering spatial relations among the features, these methods usually suffer from a low discriminative power and a high false positive rate. Instead, this EAGER project formulates object localization as a global feature grouping problem, where detected features are grouped according to some general spatial relations, such as group convexity, the separation of boundary and internal features, and feature affinities. The optimal feature grouping is achieved by using new graph models and approaches. Within this formulation, the search window is a tighter bounding polygon rather than a rectangle.By considering spatial relations and tighter bounding polygons, the feature-grouping approach developed in this project is expected to produce a significant improvement over existing image-search methods, which can be verified by testing on a standard data set. The source code developed in this project is planned to be made publicly accessible upon completion of this project. This research is focused on object localization, which can also benefit many other computer-vision applications, such as scene matching and reconstruction, object detection and recognition, content-based video retrieval, and video surveillance.
互联网上大量的图像需要高效的图像搜索算法来帮助用户找到包含感兴趣对象的图像。当前最先进的图像搜索方法通常将感兴趣的对象表示为一组特征,并通过搜索覆盖所需特征的矩形窗口来定位对象。由于没有考虑特征间的空间关系,这些方法的鉴别能力低,误报率高。相反,这个EAGER项目制定了一个全球性的功能分组问题,检测到的功能进行分组,根据一些一般的空间关系,如组凸性,边界和内部功能的分离,和功能的亲和力的对象定位。通过使用新的图模型和方法来实现最佳特征分组。在这个公式中,搜索窗口是一个更紧密的边界多边形,而不是一个rectange.By考虑空间关系和更紧密的边界多边形,在这个项目中开发的特征分组方法,预计将产生显着的改善现有的图像搜索方法,这可以通过测试标准的数据集进行验证。在这个项目中开发的源代码计划在这个项目完成后公开访问。本研究的重点是目标定位,这也可以受益于许多其他计算机视觉应用,如场景匹配和重建,目标检测和识别,基于内容的视频检索,视频监控。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Song Wang其他文献

Machine Learning-Based Water Level Prediction in Lake Erie
基于机器学习的伊利湖水位预测
  • DOI:
    10.3390/w12102654
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Qi Wang;Song Wang
  • 通讯作者:
    Song Wang
Development of a filter-aided extraction method coupled with glycosylamine labeling to simplify and enhance high performance liquid chromatography-based N-glycan analysis.
开发过滤辅助提取方法与糖胺标记相结合,以简化和增强基于高效液相色谱的 N-聚糖分析。
  • DOI:
    10.1016/j.chroma.2019.04.059
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Yike Wu;Qiuyue Sha;Chang Wang;Bifeng Liu;Song Wang;Xin Liu
  • 通讯作者:
    Xin Liu
A Penalty-based Method for Solving a Discrete HJB Complementarity Problem
求解离散 HJB 互补问题的基于惩罚的方法
  • DOI:
    10.61208/pjo-2023-011
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0.2
  • 作者:
    Kai Zhang;Xiaoqi Yang;Song Wang
  • 通讯作者:
    Song Wang
Enhanced Passivation and Carrier Collection in Ink-Processed PbS Quantum Dot Solar Cells via a Supplementary Ligand Strategy
通过补充配体策略增强油墨处理 PbS 量子点太阳能电池的钝化和载流子收集
  • DOI:
    10.1021/acsami.0c08135
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Xiaokun Yang;Ji Yang;Muhammad Irfan Ullah;Yong Xia;Guijie Liang;Song Wang;Jian Zhang;Hsien-Yi Hsu;Haisheng Song;Jiang Tang
  • 通讯作者:
    Jiang Tang
Overview of Topic Detection and Tracking of Methods for Microblogs
微博话题检测与追踪方法综述

Song Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Song Wang', 18)}}的其他基金

RI: Small: 3D Nonrigid Object Reconstruction from Large-Scale Unorganized 2D Images
RI:小型:从大规模无组织 2D 图像重建 3D 非刚性对象
  • 批准号:
    1017199
  • 财政年份:
    2010
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Shape Exploration for Medical Applications --- From Representation, Correspondence, Deformation to Image Segmentation
医学应用的形状探索——从表示、对应、变形到图像分割
  • 批准号:
    0312861
  • 财政年份:
    2003
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant

相似海外基金

Computational and neural mechanisms of perceptual grouping
知觉分组的计算和神经机制
  • 批准号:
    RGPIN-2020-04097
  • 财政年份:
    2022
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Discovery Grants Program - Individual
fMRI Reverse Correlation as a Novel Method for Revealing Computations Underlying Perceptual Grouping
fMRI 逆相关作为揭示感知分组基础计算的新方法
  • 批准号:
    2122866
  • 财政年份:
    2021
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
CIF:Small: Theory and Methods for Simultaneous Feature Auto-grouping and Dimension Reduction in Supervised Multivariate Learning
CIF:Small:监督多元学习中同时特征自动分组和降维的理论和方法
  • 批准号:
    2105818
  • 财政年份:
    2021
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Computational and neural mechanisms of perceptual grouping
知觉分组的计算和神经机制
  • 批准号:
    RGPIN-2020-04097
  • 财政年份:
    2021
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Discovery Grants Program - Individual
Development of a Surrogate Selection Method for Simultaneous Analysis of Pesticides Based on Grouping of Matrix Effects and Distribution Coefficient
基于基质效应和分布系数分组的农药同步分析替代选择方法的开发
  • 批准号:
    20K15493
  • 财政年份:
    2020
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Border ownership and grouping in primate visual cortex
灵长类视觉皮层的边界所有权和分组
  • 批准号:
    10041675
  • 财政年份:
    2020
  • 资助金额:
    $ 7.5万
  • 项目类别:
Border ownership and grouping in primate visual cortex
灵长类视觉皮层的边界所有权和分组
  • 批准号:
    10661306
  • 财政年份:
    2020
  • 资助金额:
    $ 7.5万
  • 项目类别:
Computational and neural mechanisms of perceptual grouping
知觉分组的计算和神经机制
  • 批准号:
    RGPIN-2020-04097
  • 财政年份:
    2020
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Discovery Grants Program - Individual
Visual Information Retrieval Considering Human Perception for Grouping Patterns
考虑人类对分组模式的感知的视觉信息检索
  • 批准号:
    20K11899
  • 财政年份:
    2020
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Border ownership and grouping in primate visual cortex
灵长类视觉皮层的边界所有权和分组
  • 批准号:
    10250489
  • 财政年份:
    2020
  • 资助金额:
    $ 7.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了