Tailored and Functionalized Polyolefin Structures via Metathesis Polycondensation Chemistry

通过复分解缩聚化学定制和功能化聚烯烃结构

基本信息

  • 批准号:
    0314110
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-07-01 至 2007-12-31
  • 项目状态:
    已结题

项目摘要

Acyclic diene metathesis polymerization will be employed in the pursuit of 4 research objectives: to define structure property relationships in branched polyethylene and related (functionalized) materials, to create a set of "Bio-Olefins" for tissue engineering and other bioapplications, to explore solid state metathesis chemistry, and to continue to expand the catalyst base for this metathesis oriented polycondensation chemistry. Precision synthesis techniques based on ADMET chemistry will be used to create branched polyethylene, where the branch identity and frequency can be controlled in an exact manner. Completely new functionalized versions of polyethylene will be made, and the structure/property relationships of these model ADMET polymers will be examined. Doing so will set clear goals for the generation of useful functionalized polyethylene structures. Collaborations on this aspect of the research are established with two industrial research laboratories in the USA in addition to the University of Pennsylvania and the Max Planck Institute for Polymer Research in Germany. Polyolefins containing amino acid and dipeptide branches have been made via this condensation chemistry, polymers which readily crystallize thus rendering them as durable materials for biomedical applications. Attaching known biologically active peptide sequences to the polyolefin backbone will advance this research. The biological activity of these materials will be examined in collaboration with two separate research groups, one at the University of Florida and the other at MIT; higher order structures within these polymers will be accessed via collaboration with Kyoto University in Japan. Solid-state metathesis polymerization thus far has produced the first known metathesis polycondensation chemistry occurring at room temperature. This facile method of polymer synthesis may prove useful in generating otherwise intractable polymer structures, some of which are conjugated in nature. Collaborations regarding this aspect of the work are in place with the research group at the University of Florida that investigates conjugated polymer systems. The catalyst base for ADMET chemistry will continue at a low level. Metathesis catalyst research, which is being done in several organometallic laboratories around the world, benefits ADMET chemistry; the metathesis catalyst work done within this project is being tailored especially for metathesis polycondensation.Polyethylene is the largest volume plastic made in the world, with a demand for more than 110 billion pounds produced in the year 2000 alone. Its impact on society is obvious and important, and so conducting research on polyethylene and related materials can influence a large number of people. This research is designed to strengthen the utility of polyethylene further by understanding fundamental issues associated with crystallization of this material, by synthesizing functionalized versions, and by expanding into tissue engineering, drug delivery, and other biomedical applications. Amino acids and peptides are being attached to the backbone of the plastic to create this new class of biomaterials. The research provides an intensive educational and training basis for undergraduate, Masters, and PhD students in chemistry and materials science. Included in the plan are several collaborations with other research groups in the USA, Germany, and Japan. These interactions will broaden the student's exposure beyond the University of Florida and our nation.
无环二烯复分解聚合将用于实现4个研究目标:定义支化聚乙烯和相关(功能化)材料的结构性能关系,创建一套用于组织工程和其他生物应用的“生物烯烃”,探索固态复分解化学,并继续扩展这种复分解导向缩聚化学的催化剂基础。 基于 ADMET 化学的精密合成技术将用于制造支化聚乙烯,其中支链特性和频率可以以精确的方式控制。 将制造全新的功能化聚乙烯,并检查这些 ADMET 聚合物模型的结构/性能关系。 这样做将为生成有用的功能化聚乙烯结构设定明确的目标。 除了宾夕法尼亚大学和德国马克斯·普朗克聚合物研究所之外,还与美国的两个工业研究实验室建立了这方面研究的合作。 含有氨基酸和二肽支链的聚烯烃是通过这种缩合化学制成的,聚合物很容易结晶,从而使它们成为生物医学应用的耐用材料。 将已知的生物活性肽序列连接到聚烯烃主链将推进这项研究。 这些材料的生物活性将与两个独立的研究小组合作进行检查,一个在佛罗里达大学,另一个在麻省理工学院;这些聚合物中的更高阶结构将通过与日本京都大学的合作来获得。 迄今为止,固态复分解聚合已经产生了第一个已知的在室温下发生的复分解缩聚化学反应。 这种简便的聚合物合成方法可能有助于生成原本难以处理的聚合物结构,其中一些本质上是共轭的。 与佛罗里达大学研究共轭聚合物系统的研究小组就这方面的工作进行了合作。 ADMET化学催化剂基础将继续保持在低水平。 世界各地的多个有机金属实验室正在进行复分解催化剂研究,这有利于 ADMET 化学;该项目中所做的复分解催化剂工作是专门为复分解缩聚量身定制的。聚乙烯是世界上产量最大的塑料,仅 2000 年一年的需求量就超过 1100 亿磅。 它对社会的影响是显而易见和重要的,因此对聚乙烯及相关材料进行研究可以影响很多人。 这项研究旨在通过了解与聚乙烯结晶相关的基本问题、合成功能化版本以及扩展到组织工程、药物输送和其他生物医学应用,进一步增强聚乙烯的实用性。 氨基酸和肽被附着在塑料的主链上,以创造出这种新型生物材料。 该研究为化学和材料科学领域的本科生、硕士生和博士生提供了强化教育和培训基础。 该计划包括与美国、德国和日本其他研究小组的多项合作。 这些互动将扩大学生在佛罗里达大学和我们国家之外的接触面。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

K. Wagener其他文献

Long-term biodistribution study of HPMA-ran-LMA copolymers in vivo by means of 131I-labeling.
通过 131I 标记对 HPMA-ran-LMA 共聚物进行体内长期生物分布研究。
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    K. Wagener;Dorothea Moderegger;Mareli Allmeroth;Achim T Reibel;Stefan Kramer;B. Biesalski;N. Bausbacher;R. Zentel;O. Thews;F. Rösch
  • 通讯作者:
    F. Rösch
Advances in Acyclic Diene Metathesis Polymerization
无环二烯复分解聚合研究进展
  • DOI:
    10.1016/b978-0-444-53349-4.00139-4
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Berda;K. Wagener
  • 通讯作者:
    K. Wagener
Recent Advances in ADMET Polycondensation Chemistry
ADMET 缩聚化学的最新进展
  • DOI:
    10.1002/9783527603978.mst0430
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    E. Berda;K. Wagener
  • 通讯作者:
    K. Wagener
Solid-State Olefin Metathesis: ADMET of Rigid-Rod Polymers and Ring-Closing Metathesis†
固态烯烃复分解:刚性棒聚合物的 ADMET 和闭环复分解†
  • DOI:
    10.1002/macp.200400137
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Garrett W. Oakley;K. Wagener
  • 通讯作者:
    K. Wagener
Microwave-assisted ADMET polymerization
微波辅助 ADMET 聚合
  • DOI:
    10.1016/j.tetlet.2015.04.122
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Taylor W. Gaines;K. Williams;K. Wagener;G. Rojas
  • 通讯作者:
    G. Rojas

K. Wagener的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('K. Wagener', 18)}}的其他基金

Tactic, Ionomer, and Long Branch Length Effects in Precision Polymer Chemistry
精密聚合物化学中的策略、离聚物和长支链长度效应
  • 批准号:
    1505778
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Precision Polyolefins Embracing Tacticity, Amorphous Structure Control, and Precision-Enhanced Biological Activity
精密聚烯烃具有立构性、无定形结构控制和精密增强的生物活性
  • 批准号:
    1203136
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Morphology Control of Olefin Based Homo- and Copolymers in Catalytic Gas-Phase, Slurry and Emulsion Polymerization
催化气相、淤浆和乳液聚合中烯烃基均聚物和共聚物的形态控制
  • 批准号:
    1058079
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
The Preparation & Characterization of Refined & Complex Polyolefin Structures
准备
  • 批准号:
    0703261
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
IMR: Acquisition of Modern Gel Permeation Chromatography Instrumentation for the Butler Polymer Research Laboratory
IMR:为巴特勒聚合物研究实验室购置现代凝胶渗透色谱仪器
  • 批准号:
    0215994
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
U.S.-Germany Dissertation Enhancement: X-ray and Electron Diffraction Experiments on AMDET Polyethylene
美德论文强化:AMDET 聚乙烯的 X 射线和电子衍射实验
  • 批准号:
    9907134
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Well-Controlled Polymer Structures via Metathesis Polycondensation Chemistry
通过复分解缩聚化学控制良好的聚合物结构
  • 批准号:
    9806492
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Acyclic Diene Metathesis Polymerization
无环二烯复分解聚合
  • 批准号:
    9520803
  • 财政年份:
    1995
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Polymer and Organometallic Chemistry Related to Acyclic Diene Metathesis (ADMET) Polymerization
与无环二烯复分解 (ADMET) 聚合相关的聚合物和有机金属化学
  • 批准号:
    9207358
  • 财政年份:
    1992
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似海外基金

Continuous, Large-scale Manufacturing of Functionalized Silver Nanowire Transparent Conducting Films
功能化银纳米线透明导电薄膜的连续大规模制造
  • 批准号:
    2422696
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
A methodology to connect functionalized gonadal constructs to a chick embryo through mechanically induced blood vessels from an egg
一种通过鸡蛋机械诱导血管将功能化性腺结构连接到鸡胚胎的方法
  • 批准号:
    24K15741
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
NPBactID - Differential binding of peptoid functionalized nanoparticles to bacteria for identifying specific strains
NPBactID - 类肽功能化纳米粒子与细菌的差异结合,用于识别特定菌株
  • 批准号:
    EP/Y029542/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
EAGER: CET: Functionalized Graphene for Sustainable Rare Earth Metal Separation
EAGER:CET:用于可持续稀土金属分离的功能化石墨烯
  • 批准号:
    2337221
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Dual Catalysis of Superatomic Metal Nanocluster Functionalized by Supramolecular Reaction Field
超分子反应场功能化超原子金属纳米团簇的双重催化
  • 批准号:
    23KJ1383
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Towards Ultrasensitive Detection of Bacterial Extracellular Electron Transfer in Human Gut by Novel Functionalized Carbon Nanotube Electrode Interfaces and Organic Microbial Electrochemical Transistor
通过新型功能化碳纳米管电极接口和有机微生物电化学晶体管对人体肠道中细菌细胞外电子转移进行超灵敏检测
  • 批准号:
    23K13651
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unprecedented and potent immunoregulation provided by protein capture with functionalized small synthetic nucleic acids
通过功能化小合成核酸捕获蛋白质提供前所未有的有效免疫调节
  • 批准号:
    23H00317
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
A general way to selective-functionalized pillar[n]arenes and their supramolecular mate rials
选择性功能化柱芳烃及其超分子材料的通用方法
  • 批准号:
    23KF0235
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
EFRI ELiS: Biofilm-functionalized and -maintained, living infrastructure systems
EFRI ELiS:生物膜功能化和维护的生活基础设施系统
  • 批准号:
    2223756
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Boron-Functionalized pi-Conjugated Materials with Tailored Properties
具有定制特性的硼功能化π共轭材料
  • 批准号:
    2247211
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了