Accurate and Efficient Matrix Computations with Structured Matrices
使用结构化矩阵进行准确高效的矩阵计算
基本信息
- 批准号:0314286
- 负责人:
- 金额:$ 12.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-07-15 至 2006-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project concentrates on developing a thorough theoretical and numerical analysis and designing algorithms for accurate and efficient matrix computations with structured matrices. Algorithms for computing the eigenvalues, singular values and the solution to a linear system are executed on modern computers in finite precision arithmetic. As a consequence, round-off errors can cause loss of accuracy in these computations when ill-conditioned problems are solved, usually leaving the user with the only remedy of running the same algorithm using wider precision at a much higher computational cost. The goal of this study is to identify matrix structures and understand matrix properties which make it possible to design algorithms that will perform matrix computations accurately in the face of roundoff and will succeed in computing the right answer even when the traditional structure-ignoring algorithms fail. The matrix structures that will be studied appear very often in practical applications and include: Totally positive, tridiagonal, M-matrices, (generalized) Vandermonde, Cauchy, etc. and combinations thereof.Most scientific and engineering computations compute in their core the solution of a linear system, an eigenvalue or a singular value problem. Typical examples include simulations automobile crash-testing, testing bridge and building structural designs and behavior under stress (earthquakes, explosions, etc.). Structure-exploiting accurate and efficient matrix algorithms make running such applications faster, easier, less reliant on super computers and allow for computations of more sophisticated designs and simulations than is currently possible. As a result it may become easier to design safer cars, which cost, weight and pollute less, and it may allow for an easier and faster design of bridges, buildings and other structures that are less expensive, faster to build and are also less susceptible to the forces of nature.
本项目专注于发展一个全面的理论和数值分析和设计算法,以准确和有效的矩阵计算与结构化矩阵。计算线性系统的特征值、奇异值和解的算法在现代计算机上以有限精度算法执行。因此,在解决病态问题时,舍入误差可能导致这些计算中的准确性损失,通常留给用户的唯一补救办法是以更高的计算成本使用更大的精度运行相同的算法。本研究的目标是识别矩阵结构并理解矩阵性质,从而使设计算法成为可能,这些算法将在面对舍入时准确地执行矩阵计算,并且即使在传统的忽略结构的算法失败时也能成功地计算出正确的答案。我们将研究的矩阵结构在实际应用中经常出现,包括:全正、三对角、m矩阵、(广义)Vandermonde、Cauchy等及其组合。大多数科学和工程计算的核心是计算线性系统、特征值或奇异值问题的解。典型的例子包括模拟汽车碰撞测试,测试桥梁和建筑结构设计和在压力下的行为(地震,爆炸等)。利用结构的精确和高效的矩阵算法使运行这样的应用程序更快,更容易,更少依赖于超级计算机,并允许比目前可能的更复杂的设计和模拟的计算。因此,设计更安全的汽车可能会变得更容易,这些汽车成本、重量和污染都更少,并且可以更容易、更快地设计桥梁、建筑物和其他结构,这些结构更便宜、建造速度更快,也更不容易受到自然力量的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alan Edelman其他文献
Admissible slopes for monotone and convex interpolation
- DOI:
10.1007/bf01397546 - 发表时间:
1987-07-01 - 期刊:
- 影响因子:2.200
- 作者:
Alan Edelman;Charles A. Micchelli - 通讯作者:
Charles A. Micchelli
Random Triangle Theory with Geometry and Applications
- DOI:
10.1007/s10208-015-9250-3 - 发表时间:
2015-03-07 - 期刊:
- 影响因子:2.700
- 作者:
Alan Edelman;Gilbert Strang - 通讯作者:
Gilbert Strang
MATLAB*P 2.0 : interactive supercomputing made practical
MATLAB*P 2.0:交互式超级计算变得实用
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Long Yin Choy;Alan Edelman - 通讯作者:
Alan Edelman
Pascal Matrices
帕斯卡矩阵
- DOI:
10.1080/00029890.2004.11920065 - 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Alan Edelman;Gilbert Strang - 通讯作者:
Gilbert Strang
Sum-of-Squares Bounds for Quantum Optimal Control
量子最优控制的平方和界
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Flemming Holtorf;F. Schäfer;Julian Arnold;Christopher Rackauckas;Alan Edelman - 通讯作者:
Alan Edelman
Alan Edelman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alan Edelman', 18)}}的其他基金
eMB: Collaborative Research: Discovery and calibration of stochastic chemical reaction network models
eMB:协作研究:随机化学反应网络模型的发现和校准
- 批准号:
2325184 - 财政年份:2023
- 资助金额:
$ 12.64万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: Convergence of Bayesian inverse methods and scientific machine learning in Earth system models through universal differentiable programming
协作研究:框架:通过通用可微编程将贝叶斯逆方法和科学机器学习在地球系统模型中融合
- 批准号:
2103804 - 财政年份:2021
- 资助金额:
$ 12.64万 - 项目类别:
Standard Grant
Framework: Software: Next-Generation Cyberinfrastructure for Large-Scale Computer-Based Scientific Analysis and Discovery
框架:软件:用于大规模计算机科学分析和发现的下一代网络基础设施
- 批准号:
1835443 - 财政年份:2019
- 资助金额:
$ 12.64万 - 项目类别:
Standard Grant
Collaborative Research: Theory and Algorithms for Beta Random Matrices: The Random Matrix Method of "Ghosts" and "Shadows"
合作研究:β随机矩阵的理论与算法:“鬼”与“影”的随机矩阵方法
- 批准号:
1016125 - 财政年份:2010
- 资助金额:
$ 12.64万 - 项目类别:
Standard Grant
PetaBricks: A Language and Compiler for Scalability and Robustness
PetaBricks:具有可扩展性和鲁棒性的语言和编译器
- 批准号:
0832997 - 财政年份:2008
- 资助金额:
$ 12.64万 - 项目类别:
Standard Grant
Algorithms for Applied Multivariate Statistical Analysis
应用多元统计分析算法
- 批准号:
0608306 - 财政年份:2006
- 资助金额:
$ 12.64万 - 项目类别:
Standard Grant
Random Matrix Theory and Computations
随机矩阵理论与计算
- 批准号:
0411962 - 财政年份:2004
- 资助金额:
$ 12.64万 - 项目类别:
Standard Grant
Iterative methods for Non-Hermitian Problems and Related Matrix Analysis
非厄米问题的迭代方法及相关矩阵分析
- 批准号:
0209437 - 财政年份:2002
- 资助金额:
$ 12.64万 - 项目类别:
Standard Grant
FETI Algorithms for Mortar Methods
用于砂浆方法的 FETI 算法
- 批准号:
0103588 - 财政年份:2001
- 资助金额:
$ 12.64万 - 项目类别:
Standard Grant
相似海外基金
Robust and Efficient Numerical Methods for Matrix Problems with Singularity
奇异性矩阵问题的鲁棒高效数值方法
- 批准号:
20K14356 - 财政年份:2020
- 资助金额:
$ 12.64万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Preparation of Stable and Efficient Fluorescent Alloy Nanoparticles by Matrix Sputtering
基质溅射制备稳定高效的荧光合金纳米粒子
- 批准号:
18H01820 - 财政年份:2018
- 资助金额:
$ 12.64万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Matrix Factorization-based Efficient Learning for Neural Networks
基于矩阵分解的神经网络高效学习
- 批准号:
18K11457 - 财政年份:2018
- 资助金额:
$ 12.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Efficient time evolution of quantum many-body systems in 2D with matrix product states
具有矩阵乘积状态的二维量子多体系统的高效时间演化
- 批准号:
299366262 - 财政年份:2016
- 资助金额:
$ 12.64万 - 项目类别:
Research Units
RUI: Efficient Algorithms for Compressed Sensing and Matrix Completion
RUI:压缩感知和矩阵补全的高效算法
- 批准号:
1620390 - 财政年份:2016
- 资助金额:
$ 12.64万 - 项目类别:
Standard Grant
Efficient recursive algorithms in the invariant imbedding T-Matrix Method for computation of light scattering
用于计算光散射的不变嵌入 T 矩阵方法中的高效递归算法
- 批准号:
327332384 - 财政年份:2016
- 资助金额:
$ 12.64万 - 项目类别:
Research Grants
III: Small: Fast and Efficient Algorithms for Matrix Decompositions and Applications to Human Genetics
III:小:快速高效的矩阵分解算法及其在人类遗传学中的应用
- 批准号:
1661756 - 财政年份:2016
- 资助金额:
$ 12.64万 - 项目类别:
Standard Grant
Study on the development of the efficient use of the protein fusolin targetting the insect peritophic matrix for pest control
靶向昆虫周生基质的蛋白梭菌素高效利用害虫防治研究
- 批准号:
26450474 - 财政年份:2014
- 资助金额:
$ 12.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Constrained low rank matrix recovery: from efficient algorithms to brain network imaging
约束低秩矩阵恢复:从高效算法到脑网络成像
- 批准号:
EP/K037102/1 - 财政年份:2014
- 资助金额:
$ 12.64万 - 项目类别:
Research Grant
III: Small: Fast and Efficient Algorithms for Matrix Decompositions and Applications to Human Genetics
III:小:快速高效的矩阵分解算法及其在人类遗传学中的应用
- 批准号:
1319280 - 财政年份:2013
- 资助金额:
$ 12.64万 - 项目类别:
Standard Grant