RUI: Efficient Algorithms for Compressed Sensing and Matrix Completion
RUI:压缩感知和矩阵补全的高效算法
基本信息
- 批准号:1620390
- 负责人:
- 金额:$ 11.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-12-15 至 2019-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Traditionally, a signal is measured by acquiring every component in the signal and then compressing the signal with an appropriate computational algorithm. For example, digital cameras capture an image with a huge number of pixels and then a compression scheme such as JPEG is used to reduce the size of the digital image for storage or dissemination. In many applications, the costs and challenges associated with acquiring measurements are considerable. In compressed sensing and matrix completion, the measurement process is altered in order to drastically reduce the number of measurements, but the signal reconstruction process is necessarily more difficult. Compressed sensing and matrix completion transfer the workload from the measurement process to computational resources dedicated to the signal reconstruction. Typical applications include compressive radar, geophysical data analysis, medical imaging, and computer vision. This project will take a holistic approach to data acquisition and algorithm development for compressed sensing and matrix completion where theoretical guarantees often rely on computationally expensive subroutines and apply to computationally burdensome measurement processes. Increased efficiency can be achieved through sparse measurement operators, relaxed subroutine requirements in iterative greedy algorithms, and the implementation of these algorithms on computation accelerating hardware.Compressed sensing combines the acts of signal acquisition and compression into a single operation. Computationally efficient algorithms then produce accurate approximations to sparse signals by exploiting the underlying simplicity that the signal has relatively few important components. Matrix completion similarly exploits the simplicity of the target matrix having only a few independent columns; in other words, one recovers a low rank matrix from a limited number of measurements. While leading greedy algorithms for compressed sensing and matrix completion have theoretical guarantees defining the number of measurements required for accurately recovering the underlying low dimensional signal, these guarantees require many more measurements than practical for applications. Furthermore, many of the algorithms employ theoretically useful but computationally expensive subroutines. Observed performance of more computationally efficient measurement operators encourages the adoption of techniques in practice that lack worst case, uniform guarantees for acquisition and reconstruction. This project seeks to balance the competing desires for theoretical guarantees and fast, efficient algorithms. The project will pursue theoretically viable algorithms which are also practically useful and provide solutions to linear inverse problems in reasonable amounts of computational effort including power, time, and affordable hardware. At the same time, establishing empirical performance characteristics for computationally efficient measurement operators and recovery algorithms which lack precise guarantees will help guide practitioners and theorists in future research. To provide near real time solutions to these computationally intensive algorithms, the project will also further accelerate computation by designing and disseminating algorithm implementations which exploit the massively parallel computations available on high performance computing graphics processing units.
传统上,测量信号的方法是获取信号中的每个分量,然后使用适当的计算算法对信号进行压缩。例如,数码相机捕捉具有大量像素的图像,然后使用诸如JPEG之类的压缩方案来减小数字图像的大小以用于存储或分发。在许多应用中,与获取测量相关的成本和挑战是相当大的。在压缩感知和矩阵补全中,为了大幅减少测量次数,测量过程被改变,但信号重构过程必然更加困难。压缩感知和矩阵补全将工作量从测量过程转移到专门用于信号重构的计算资源。典型的应用包括压缩雷达、地球物理数据分析、医学成像和计算机视觉。该项目将对压缩传感和矩阵补全的数据采集和算法开发采取整体方法,其中理论保证通常依赖于计算昂贵的子例程,并适用于计算繁琐的测量过程。通过稀疏测量算子、放宽迭代贪婪算法中的子例程要求以及在计算加速硬件上实现这些算法来提高效率。然后,计算效率高的算法通过利用信号具有相对较少的重要分量这一基本简单性来产生对稀疏信号的准确近似。矩阵补全类似地利用了仅具有几个独立列的目标矩阵的简单性;换句话说,人们从有限数量的测量中恢复低秩矩阵。虽然用于压缩传感和矩阵补全的领先贪婪算法在理论上保证了精确恢复底层低维信号所需的测量量,但这些保证需要比实际应用多得多的测量量。此外,许多算法使用理论上有用但计算昂贵的子例程。观察到的计算效率更高的测量操作员的表现鼓励在实践中采用缺乏最坏情况下的技术,对采集和重建缺乏统一的保证。这个项目寻求平衡对理论保证和快速、高效算法的相互竞争的渴望。该项目将寻求理论上可行的算法,这些算法在实践中也是有用的,并在合理的计算工作量(包括功率、时间和负担得起的硬件)中提供线性逆问题的解决方案。同时,为计算高效的测量算子和缺乏精确保证的恢复算法建立经验性能特征将有助于指导实践者和理论界未来的研究。为了为这些计算密集型算法提供近乎实时的解决方案,该项目还将通过设计和传播利用高性能计算图形处理单元上可用的大规模并行计算的算法实现来进一步加速计算。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Blanchard其他文献
Jeffrey Blanchard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Blanchard', 18)}}的其他基金
I-Corps: Probiotics to Prevent Metabolic Changes Associated with Starch Induced Laminitis
I-Corps:益生菌可预防与淀粉引起的蹄叶炎相关的代谢变化
- 批准号:
1342640 - 财政年份:2013
- 资助金额:
$ 11.63万 - 项目类别:
Standard Grant
RUI: Large-scale Algorithm Analysis and GPU Implementations for Compressed Sensing and Matrix Completion
RUI:压缩感知和矩阵补全的大规模算法分析和 GPU 实现
- 批准号:
1112612 - 财政年份:2011
- 资助金额:
$ 11.63万 - 项目类别:
Standard Grant
International Research Fellowship Program: Stability and Algorithm Analysis in Compressed Sensing
国际研究奖学金计划:压缩感知的稳定性和算法分析
- 批准号:
0854991 - 财政年份:2010
- 资助金额:
$ 11.63万 - 项目类别:
Fellowship Award
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 11.63万 - 项目类别:
Continuing Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 11.63万 - 项目类别:
Continuing Grant
LEAPS-MPS: Fast and Efficient Novel Algorithms for MHD Flow Ensembles
LEAPS-MPS:适用于 MHD 流系综的快速高效的新颖算法
- 批准号:
2425308 - 财政年份:2024
- 资助金额:
$ 11.63万 - 项目类别:
Standard Grant
CAREER: A Theoretical Exploration of Efficient and Accurate Clustering Algorithms
职业生涯:高效准确聚类算法的理论探索
- 批准号:
2337832 - 财政年份:2024
- 资助金额:
$ 11.63万 - 项目类别:
Continuing Grant
CIF: Small: Theory and Algorithms for Efficient and Large-Scale Monte Carlo Tree Search
CIF:小型:高效大规模蒙特卡罗树搜索的理论和算法
- 批准号:
2327013 - 财政年份:2023
- 资助金额:
$ 11.63万 - 项目类别:
Standard Grant
ATD: Efficient and Effective Algorithms for Detection of Anomalies in High-dimensional Spatiotemporal Data with Large Amounts of Missing Data
ATD:高效且有效的高维时空数据异常检测算法
- 批准号:
2318925 - 财政年份:2023
- 资助金额:
$ 11.63万 - 项目类别:
Standard Grant
CAREER: Computation-efficient Algorithms for Grid-scale Energy Storage Control, Bidding, and Integration Analysis
职业:用于电网规模储能控制、竞价和集成分析的计算高效算法
- 批准号:
2239046 - 财政年份:2023
- 资助金额:
$ 11.63万 - 项目类别:
Continuing Grant
CRII: CIF: Sequential Decision-Making Algorithms for Efficient Subset Selection in Multi-Armed Bandits and Optimization of Black-Box Functions
CRII:CIF:多臂老虎机中高效子集选择和黑盒函数优化的顺序决策算法
- 批准号:
2246187 - 财政年份:2023
- 资助金额:
$ 11.63万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Graph Mining and Network Science with Differential Privacy: Efficient Algorithms and Fundamental Limits
协作研究:SaTC:核心:媒介:具有差异隐私的图挖掘和网络科学:高效算法和基本限制
- 批准号:
2317192 - 财政年份:2023
- 资助金额:
$ 11.63万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Graph Mining and Network Science with Differential Privacy: Efficient Algorithms and Fundamental Limits
协作研究:SaTC:核心:媒介:具有差异隐私的图挖掘和网络科学:高效算法和基本限制
- 批准号:
2317194 - 财政年份:2023
- 资助金额:
$ 11.63万 - 项目类别:
Continuing Grant