Persistence and Pattern Formation in Biological Systems
生物系统中的持久性和模式形成
基本信息
- 批准号:0314736
- 负责人:
- 金额:$ 10.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-09-01 至 2007-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Shi The investigator develops and studies somereaction-diffusion models of population ecology and of patternformations of biochemical systems. The spatial distribution ofpopulations can be affected by depressed growth rate at lowerdensity, which is called the Allee effect. For instance, it canbe caused by shortage of mates, lack of effective pollination,or harvesting. The main goal is to gain insight into the waysthat Allee and harvesting effects and dispersal behaviorinfluence the persistence and extinction of species and thesuccess or failure of biological invasions. New mathematicaltools in nonlinear elliptic and parabolic partial differentialequations and nonlinear functional analysis are developed tostudy the complicated dynamics. Emphasis is on the nonlinearphenomena that can not be obtained through linearization and onpatterns in higher spatial domains that can not be observed insimplified one-dimensional problems. The project is guided by aseries of practical problems, from fishery management, animalaggregation, and autocatalytic reactions. A second line of theproject is focused on a pattern formation mechanism, generalizingthe pioneer work of Alan Turing. A nonlinear and higher spatialdimensional mechanism is established to refine Turing patterntheory, which has been successfully applied to phenomenologicalmodels, empirical substrate-inhibition systems, and autocatalyticreactions. One part of the project studies the impact of humaninterference on the natural evolution of marine species. In thesecond part of the project, the investigator considers the originof the generation of complex patterns found everywhere in thenature, like seashells and spotty patterns on a zebra or aleopard. These studies aim to understand and control manyimportant natural phenomena, such as the persistence andextinction of commercial marine species, and complex patternformations in biochemical processes. Results of the project canbe helpful for formulating policy on managing commercialfisheries and forests, and for developing new biotechnologysimulations of natural life forms.
研究者开发和研究了一些群体生态学和生物化学系统模式的反应-扩散模型。在低密度条件下,种群的空间分布会受到生长速度下降的影响,这种效应被称为Allee效应。例如,它可能是由于缺乏配偶,缺乏有效的授粉或收获造成的。主要目标是深入了解Allee和收获效应以及扩散行为如何影响物种的持久性和灭绝以及生物入侵的成败。为研究复杂动力学问题,开发了非线性椭圆型和抛物型偏微分方程和非线性泛函分析的新数学工具。重点是通过线性化无法获得的非线性现象和在简化的一维问题中无法观察到的更高空间域中的非模式。该项目以渔业管理、动物聚集、自催化反应等一系列实际问题为指导。该项目的第二行重点是模式形成机制,概括了艾伦·图灵的先驱工作。为完善图灵模式理论,建立了一种非线性高维机制,并成功地应用于现象学模型、经验底物抑制系统和自催化反应。该项目的一部分是研究人类干预对海洋物种自然进化的影响。在项目的第二部分,研究者考虑了自然界中随处可见的复杂图案的起源,比如贝壳和斑马或豹子身上的斑点图案。这些研究旨在了解和控制许多重要的自然现象,如商业海洋物种的持续和灭绝,以及生物化学过程中的复杂模式。该项目的成果有助于制定商业渔业和森林管理政策,以及开发新的生物技术模拟自然生命形式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Junping Shi其他文献
Spatial pattern formation in activator-inhibitor models with nonlocal dispersal
具有非局部扩散的激活剂-抑制剂模型中的空间模式形成
- DOI:
10.3934/dcdsb.2020042 - 发表时间:
2021 - 期刊:
- 影响因子:1.2
- 作者:
Shanshan Chen;Junping Shi;Guohong Zhang - 通讯作者:
Guohong Zhang
Diffusive Spatial Movement with Memory
具有记忆的扩散空间运动
- DOI:
10.1007/s10884-019-09757-y - 发表时间:
2020-06 - 期刊:
- 影响因子:1.3
- 作者:
Junping Shi;Chuncheng Wang;Hao Wang;Xiangping Yan - 通讯作者:
Xiangping Yan
Bifurcation and pattern formation in diffusive Klausmeier-Gray-Scott model of water-plant interaction
水-植物相互作用扩散 Klausmeier-Gray-Scott 模型中的分岔和模式形成
- DOI:
10.1016/j.jmaa.2020.124860 - 发表时间:
2021-05 - 期刊:
- 影响因子:1.3
- 作者:
Xiaoli Wang;Junping Shi;Guohong Zhang - 通讯作者:
Guohong Zhang
Approximate Analytical Solution to the Temperature Field in Annular Thermoelectric Generator Made of Temperature- Dependent Material
温度相关材料环形热电发生器温度场的近似解析解
- DOI:
10.1109/ted.2021.3122951 - 发表时间:
2021-12 - 期刊:
- 影响因子:3.1
- 作者:
Wei Niu;Xiaoshan Cao;Yifeng Hu;Fangfang Wang;Junping Shi - 通讯作者:
Junping Shi
Scalable lentiviral vector production system compatible with industrial pharmaceutical applications The present invention relates to the industrialization of the production of recombinant lentiviral vectors in order to manufacture sufficient materials for therapeutic applications such as gene therap
与工业制药应用兼容的可扩展的慢病毒载体生产系统 本发明涉及重组慢病毒载体生产的工业化,以便制造足够的用于治疗应用(例如基因治疗)的材料
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Run Zhou;Binbin Zhang;Wei Zhang;T. Kong;Jie Fu;Jie Li;Junping Shi - 通讯作者:
Junping Shi
Junping Shi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Junping Shi', 18)}}的其他基金
Collaborative Research: Quantitative Principles behind the Spatio-Temporal Oscillation of Intracellular Calcium
合作研究:细胞内钙时空振荡背后的定量原理
- 批准号:
1853598 - 财政年份:2019
- 资助金额:
$ 10.85万 - 项目类别:
Standard Grant
Collaborative Research: Persistence, Stability and Control of Populations in Heterogeneous Networks
协作研究:异构网络中群体的持久性、稳定性和控制
- 批准号:
1715651 - 财政年份:2017
- 资助金额:
$ 10.85万 - 项目类别:
Continuing Grant
EXTREEMS-QED: Computational and Statistical theory and techniques in the study of large data sets
EXTREEMS-QED:大数据集研究中的计算和统计理论和技术
- 批准号:
1331021 - 财政年份:2013
- 资助金额:
$ 10.85万 - 项目类别:
Continuing Grant
Mathematical Studies of Spatial Bistability in Ecological Systems
生态系统空间双稳定性的数学研究
- 批准号:
1022648 - 财政年份:2010
- 资助金额:
$ 10.85万 - 项目类别:
Standard Grant
相似国自然基金
Nano/Micro-surface pattern的摩擦特性研究
- 批准号:50765008
- 批准年份:2007
- 资助金额:22.0 万元
- 项目类别:地区科学基金项目
图案(Pattern)动力学方法的初探
- 批准号:19472043
- 批准年份:1994
- 资助金额:6.5 万元
- 项目类别:面上项目
激光等离子体中的Pattern动力学及时空混沌
- 批准号:19375038
- 批准年份:1993
- 资助金额:3.0 万元
- 项目类别:面上项目
相似海外基金
Design and Analysis of Structure Preserving Discretizations to Simulate Pattern Formation in Liquid Crystals and Ferrofluids
模拟液晶和铁磁流体中图案形成的结构保持离散化的设计和分析
- 批准号:
2409989 - 财政年份:2024
- 资助金额:
$ 10.85万 - 项目类别:
Standard Grant
Observation of pattern formation in low-energy electron diffraction (LEED) under single electron incidence conditions
单电子入射条件下低能电子衍射 (LEED) 图案形成的观察
- 批准号:
23K11711 - 财政年份:2023
- 资助金额:
$ 10.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of the effect of integral kernel shape on pattern formation in nonlocal reaction-diffusion equations
积分核形状对非局部反应扩散方程模式形成的影响分析
- 批准号:
23K13013 - 财政年份:2023
- 资助金额:
$ 10.85万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Pattern formation in drying bio-fluid droplets: From Fundamentals to Data-driven Disease Screening
干燥生物液滴的模式形成:从基础知识到数据驱动的疾病筛查
- 批准号:
23KF0104 - 财政年份:2023
- 资助金额:
$ 10.85万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Establishment of a new epidermal culture focusing on keratinocyte pattern formation
建立专注于角质形成细胞模式形成的新型表皮培养物
- 批准号:
23K15277 - 财政年份:2023
- 资助金额:
$ 10.85万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Pattern formation in singularly perturbed partial differential equations
职业:奇异摄动偏微分方程中的模式形成
- 批准号:
2238127 - 财政年份:2023
- 资助金额:
$ 10.85万 - 项目类别:
Continuing Grant
Geometric and numerical studies of the behavior and pattern formation of powders and charged particles under periodic external forces
粉末和带电粒子在周期性外力作用下的行为和图案形成的几何和数值研究
- 批准号:
23K03260 - 财政年份:2023
- 资助金额:
$ 10.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Spatial Control of Pattern Formation in Early Vertebrate Development
早期脊椎动物发育中模式形成的空间控制
- 批准号:
10673415 - 财政年份:2022
- 资助金额:
$ 10.85万 - 项目类别:
Bulk-Interface Coupled Response in Novel Materials: Pattern Formation and Interactive Migration
新型材料中的体界面耦合响应:图案形成和交互式迁移
- 批准号:
2204288 - 财政年份:2022
- 资助金额:
$ 10.85万 - 项目类别:
Standard Grant














{{item.name}}会员




