An Empirical Model of Nonlinear Pricing Competition

非线性定价竞争的实证模型

基本信息

  • 批准号:
    0318208
  • 负责人:
  • 金额:
    $ 18.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-08-15 至 2006-07-31
  • 项目状态:
    已结题

项目摘要

This research suggest a framework to estimate equilibrium models of nonlinear pricing competition using data that is readily available for many industries such as power, telecommunications, and other utilities. The basic idea behind the econometric approach is to make use of the information contained in the shape of tariffs actually offered to consumers to derive information about the distribution of consumers' usage intensity. The shape of the tariffs identifies the optimal markup that a seller charges for different quantity or quality levels to induce a population of customers to self-select according to their type, i.e., the intensity of their preferences, or their different elasticity of demand. The model thus overcomes the absence of individual consumption data, unlikely to be available for large customer markets. I consider a model of optimal nonlinear pricing, both in its monopoly and duopoly versions. Specific assumptions on demand and the distribution of consumer types allow obtaining a flexible closed form solution of the model for these different market configurations. This approach applies to cases where products are horizontally differentiated and where consumer tastes are allowed to be correlated. The prediction of the model is a quadratic tariff function that depends on observable market and firm specific characteristics. The curvature of the tariff solution is related to the hazard rate of the distribution of unobservable individual characteristics of consumers, and drives the optimal pricing rule for each purchase level. The quadratic tariff predicted by the model is then fitted to the actual nonlinear tariff of each firm in each market and time, thus allowing to estimate the structural parameters of the model, i.e., market specific demand effects, firm specific cost effects, and consumer specific unobserved heterogeneity.While price discrimination practices are common, they have been theoretically addressed only recently. The empirical makes possible to identify the determinants of the optimal markups for different types of consumers. The major advantage of this structural approach is the possibility of conducting several policy evaluations. For instance, we could account for the gains in welfare and profits of using nonlinear pricing instead of linear pricing strategies. Perhaps the most interesting policy evaluation, given the structure of the data, could be to study the welfare effects of horizontal mergers when firms engage in nonlinear pricing. Dealing explicitly with second-degree price discrimination in a competitive as well as monopolistic environment makes possible to study not only how are efficiency gains or losses spread over different consumer types, but also whether approval decisions on horizontal mergers could be subject to restrictions on the way firms price their products.
这项研究提出了一个框架,估计非线性定价竞争的均衡模型,使用的数据是现成的许多行业,如电力,电信和其他公用事业。计量经济学方法的基本思想是利用实际提供给消费者的费率中所包含的信息,得出消费者使用强度分布的信息。费率的形状确定了卖方对不同数量或质量水平收取的最佳加价,以诱导客户群体根据其类型进行自我选择,即,他们偏好的强度,或者他们不同的需求弹性。因此,该模型克服了个人消费数据的缺乏,不太可能为大型客户市场提供。我考虑了一个最优非线性定价模型,包括垄断和双头垄断两种情况。对需求和消费者类型分布的具体假设允许获得这些不同市场配置的模型的灵活封闭形式的解决方案。这种方法适用于产品横向差异化和允许消费者口味相互关联的情况。该模型的预测是一个二次关税函数,取决于可观察到的市场和企业的具体特点。关税解决方案的曲率与消费者不可观察的个人特征分布的风险率有关,并驱动每个购买水平的最优定价规则。然后,将模型预测的二次电价与每个市场和时间中每个企业的实际非线性电价拟合,从而可以估计模型的结构参数,即,市场特定需求效应、企业特定成本效应和消费者特定未观察到的异质性。虽然价格歧视做法很常见,但它们只是最近才在理论上得到解决。实证使得有可能确定不同类型的消费者的最佳加价的决定因素。这种结构性办法的主要优点是可以进行若干政策评价。例如,我们可以解释使用非线性定价而不是线性定价策略在福利和利润方面的收益。考虑到数据的结构,也许最有趣的政策评估是研究企业进行非线性定价时横向合并的福利效应。明确地处理竞争和垄断环境中的二级价格歧视,不仅可以研究效率的收益或损失如何在不同的消费者类型之间分配,而且可以研究批准横向合并的决定是否会受到公司对其产品定价方式的限制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eugenio Miravete其他文献

Eugenio Miravete的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eugenio Miravete', 18)}}的其他基金

Demand Manifolds for Empirical Industrial Organization
经验产业组织的需求流形
  • 批准号:
    2241694
  • 财政年份:
    2023
  • 资助金额:
    $ 18.26万
  • 项目类别:
    Standard Grant

相似国自然基金

基于术中实时影像的SAM(Segment anything model)开发AI指导房间隔穿刺位置决策的增强现实模型
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
  • 批准号:
    81771933
  • 批准年份:
    2017
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
基于Multilevel Model的雷公藤多苷致育龄女性闭经预测模型研究
  • 批准号:
    81503449
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
基于非齐性 Makov model 建立病证结合的绝经后骨质疏松症早期风险评估模型
  • 批准号:
    30873339
  • 批准年份:
    2008
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目

相似海外基金

Thermal noise reduction in next-generation cryogenic gravitational wave telescopes through nonlinear physical model fusion data-driven methods
通过非线性物理模型融合数据驱动方法降低下一代低温引力波望远镜的热噪声
  • 批准号:
    23K03437
  • 财政年份:
    2023
  • 资助金额:
    $ 18.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theoretical Establishment of Nonlinear Model Reduction Method and Its Application to Motor Analysis
非线性模型降阶方法的理论建立及其在电机分析中的应用
  • 批准号:
    23KJ1202
  • 财政年份:
    2023
  • 资助金额:
    $ 18.26万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Model Reduction for Control-based Continuation of Complex Nonlinear Structures
复杂非线性结构基于控制的连续性的模型简化
  • 批准号:
    EP/X026027/1
  • 财政年份:
    2023
  • 资助金额:
    $ 18.26万
  • 项目类别:
    Fellowship
ERI: Hydraulic Cylinder Diagnostics Using Nonlinear Inverse Model Estimation and Frequency Domain Analysis
ERI:使用非线性逆模型估计和频域分析进行液压缸诊断
  • 批准号:
    2301535
  • 财政年份:
    2023
  • 资助金额:
    $ 18.26万
  • 项目类别:
    Standard Grant
CRCNS: Understanding Single-Neuron Computation Using Nonlinear Model Optimization
CRCNS:使用非线性模型优化理解单神经元计算
  • 批准号:
    10612187
  • 财政年份:
    2022
  • 资助金额:
    $ 18.26万
  • 项目类别:
CAREER: Sparse Model Selection for Nonlinear Evolution Equations
职业:非线性演化方程的稀疏模型选择
  • 批准号:
    2331100
  • 财政年份:
    2022
  • 资助金额:
    $ 18.26万
  • 项目类别:
    Continuing Grant
Distributed Time-varying Coordination of Uncertain Nonlinear Multi-agent Systems: A Unified Model Reference Scheme
不确定非线性多智能体系统的分布式时变协调:统一模型参考方案
  • 批准号:
    2129949
  • 财政年份:
    2022
  • 资助金额:
    $ 18.26万
  • 项目类别:
    Standard Grant
Statistical Machine Learning for Model Predictive Control of Nonlinear Processes
用于非线性过程模型预测控制的统计机器学习
  • 批准号:
    2140506
  • 财政年份:
    2022
  • 资助金额:
    $ 18.26万
  • 项目类别:
    Standard Grant
CAREER: A Nonlinear Model Reduction Framework for Oscillatory Systems and Associated Data-Driven Inference Strategies
职业:振荡系统的非线性模型简化框架和相关的数据驱动推理策略
  • 批准号:
    2140527
  • 财政年份:
    2022
  • 资助金额:
    $ 18.26万
  • 项目类别:
    Continuing Grant
CAREER: Deep Learning Empowered Nonlinear Deformable Model
职业:深度学习赋能非线性变形模型
  • 批准号:
    2301040
  • 财政年份:
    2022
  • 资助金额:
    $ 18.26万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了