CAREER: A Nonlinear Model Reduction Framework for Oscillatory Systems and Associated Data-Driven Inference Strategies
职业:振荡系统的非线性模型简化框架和相关的数据驱动推理策略
基本信息
- 批准号:2140527
- 负责人:
- 金额:$ 59.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).This Faculty Early Career Development Program (CAREER) grant will fund research that enables improved understanding and control of collective neurological rhythms, for example pathological synchronization of neurons contributing to the motor symptoms of Parkinson’s disease, thereby promoting the progress of science, and advancing the national health. Deep brain stimulation injects electrical pulses into the brains of patients suffering from Parkinson’s to alleviate muscle tremors and rigidity. Because of the large inputs required, standard theoretical tools for predicting and analyzing the neuronal response are inadequate, since they assume small deviations from the synchronized behavior. This project will overcome such limitations by developing a new theoretical approach, suitable for complex and high-dimensional systems with oscillatory dynamics even for large deviations dominated by system nonlinearities. By combining this approach with machine-learning techniques, it will be possible to derive relevant dynamical models entirely from measurements, with potential applications to treating recovery from jet lag or controlling the air flow around vehicles and aircraft. Through close integration of research and education, this project will contribute to an engineering and science curriculum of inquiry-based, hands-on learning experiences for high school students attending outreach activities or specially designed, multi-day immersive programs at Lone Oaks Farm, a STEM education center in west Tennessee that serves large populations of underrepresented students from under-resourced local communities. Completion of this project will also yield a series of tutorial sessions, a set of online learning modules, and a computational toolbox, each promoting the use of powerful mathematical techniques for dynamical systems analysis to members of the larger research community.This research aims to make fundamental contributions to a theory of model reduction techniques for oscillatory high-dimensional systems whose dynamics are dominated by system nonlinearities, with particular emphasis on accuracy, analytical tractability, and suitability for control design. It achieves this aim by augmenting traditional phase-based reduction methods with a description of transversal dynamics in terms of isostable coordinates, which characterize the slowest decaying modes of the system Koopman operator. Adaptive updates to model parameters are then introduced to bound the time evolution of the isostable coordinates and ensure convergence of asymptotic expansions used in the model reduction. Generalizations to non-periodic dynamics and, importantly, to data-driven model identification in the absence of known underlying dynamical equations will be explored in theoretical models and in applications to circadian cycles, neural brain rhythms, and fluid flow systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).This Faculty Early Career Development Program (CAREER) grant will fund research that enables improved understanding and control of collective neurologic rhythms, for example pathological synchronization of neurons contributing to the motor symptoms of Parkinson’s disease, thereby promoting the progress of science, and advancing the national health.深脑刺激将脉冲注射到患有帕金森氏症患者的大脑中,以减轻肌肉震颤和僵化。由于所需的大量输入,用于预测和分析神经元反应的标准理论工具是不足的,因为它们假设与同步行为相比很小。该项目将通过开发一种新的理论方法来克服此类局限性,该方法适用于具有振荡动力学的复杂和高维系统,即使对于由系统非线性主导的大型偏离也是如此。通过将这种方法与机器学习技术相结合,可以完全从测量中得出相关的动态模型,以及潜在的应用程序来处理从喷气滞后滞后或控制车辆和飞机周围的空气流量的恢复。通过紧密整合研究和教育,该项目将为参加外展活动或专门设计的,多天的沉浸式课程的高中生的基于询问的,动手学习经验的工程和科学课程做出贡献,该课程是西田纳西州的STEM教育中心,该中心是西田纳西州的STEM教育中心,该中心为来自不足不足的地方社区的大量学生提供了很多人群。该项目的完成还将产生一系列的教程,一组在线学习模块和一个计算工具箱,每个研究都促进了对较大研究社区成员的动态系统分析的强大数学技术的使用。本研究旨在通过对振动性的振动性进行启发性的模型降低理论的基本贡献,以启发性化的系统来构成敏捷性,以启发性能,以启发性地位,以启发性地位,以启发性地位,以启发性地位,以启发性地位,以启发性地位,以启发性地位,以启发性地位,以启发性地位,以启发性地位,以启发性地位,以启发性地位,以启发性地位,以启发性地位,以启发性地位,以启发性地统治该系统。障碍和控制设计的适用性。它通过通过同等坐标来描述横向动力学来增强传统基于阶段的还原方法来实现这一目标,该方法表征了系统Koopman操作员的慢速衰减模式。然后引入对模型参数的自适应更新,以限制等量坐标的时间演变,并确保模型还原中使用的不对称扩展的收敛性。在缺乏已知基本动态方程式的数据驱动的模型识别上,将在理论模型以及对昼夜节律周期,中性的大脑节律和流体流动系统的应用中探索对数据驱动的模型识别的概括,这些奖项反映了NSF的法定任务和范围的范围。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A direct method approach for data-driven inference of high accuracy adaptive phase-isostable reduced order models
高精度自适应相位等稳降阶模型的数据驱动推理的直接方法
- DOI:10.1016/j.physd.2023.133675
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Wilson, Dan
- 通讯作者:Wilson, Dan
Control of coupled neural oscillations using near-periodic inputs
使用近周期输入控制耦合神经振荡
- DOI:10.1063/5.0076508
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Toth, Kaitlyn;Wilson, Dan
- 通讯作者:Wilson, Dan
Koopman Operator Inspired Nonlinear System Identification
库普曼算子启发的非线性系统辨识
- DOI:10.1137/22m1512272
- 发表时间:2023
- 期刊:
- 影响因子:2.1
- 作者:Wilson, Dan
- 通讯作者:Wilson, Dan
Data-driven model identification using forcing-induced limit cycles
使用强制引起的极限环进行数据驱动的模型识别
- DOI:10.1016/j.physd.2023.134013
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Wilson, Dan
- 通讯作者:Wilson, Dan
Phase-Amplitude Coordinate-Based Neural Networks for Inferring Oscillatory Dynamics
用于推断振荡动力学的基于相位振幅坐标的神经网络
- DOI:10.1007/s00332-023-09994-y
- 发表时间:2024
- 期刊:
- 影响因子:3
- 作者:Ahmed, Talha;Wilson, Dan
- 通讯作者:Wilson, Dan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dan Wilson其他文献
Peer Group Influences on Learning Outcomes
同侪群体对学习成果的影响
- DOI:
10.1016/j.ijintrel.2022.08.008 - 发表时间:
2017 - 期刊:
- 影响因子:2.8
- 作者:
Dan Wilson - 通讯作者:
Dan Wilson
Urinary incontinence in stroke: results from the UK National Sentinel Audits of Stroke 1998-2004.
中风引起的尿失禁:英国国家中风前哨审计 1998-2004 年的结果。
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:6.7
- 作者:
Dan Wilson;D. Lowe;A. Hoffman;A. Rudd;A. Wagg - 通讯作者:
A. Wagg
V-Aware: The Impact of Patient-Centric Vascular Awareness and Education Initiatives
- DOI:
10.1016/j.jvs.2016.06.037 - 发表时间:
2016-09-01 - 期刊:
- 影响因子:
- 作者:
Manish Mehta;Philip Paty;Chetna Prasad;Krishna Martinez-Singh;Dan Wilson;Nadeep Rai;Robert Shang - 通讯作者:
Robert Shang
Optimal phase-based control of strongly perturbed limit cycle oscillators using phase reduction techniques.
使用相位缩减技术对强扰动极限循环振荡器进行基于相位的最佳控制。
- DOI:
10.1103/physreve.109.024223 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Adharaa Neelim Dewanjee;Dan Wilson - 通讯作者:
Dan Wilson
Desynchronization of stochastically synchronized chemical oscillators.
随机同步化学振荡器的去同步。
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:2.9
- 作者:
Razan Snari;M. Tinsley;Dan Wilson;S. Faramarzi;T. Netoff;J. Moehlis;K. Showalter - 通讯作者:
K. Showalter
Dan Wilson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dan Wilson', 18)}}的其他基金
Engineering Bifurcations in High-Dimensional Dynamical Systems Using Isostable Reduction Methods
使用等稳定约简方法在高维动力系统中设计分岔
- 批准号:
1933583 - 财政年份:2020
- 资助金额:
$ 59.9万 - 项目类别:
Standard Grant
相似国自然基金
跨声速强气动干扰下管道磁浮列车系统的非线性动力学模型与悬浮失稳机制
- 批准号:52305134
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
准静态的非线性热多孔弹性力学模型稳定的全离散多物理场有限元方法及其应用
- 批准号:12371393
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
非线性磁流体空间分数阶模型长时间计算研究
- 批准号:12301516
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
带有奇异敏感或非线性生产的趋化模型的定性研究
- 批准号:12301260
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非线性滤波与非线性模型修正融合的大跨桥梁荷载-损伤识别方法研究
- 批准号:52308318
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Eradicating Misconceptions about Viruses using Multimodal Trace Data in an Intelligent Game-based Environment across Educational Contexts
在跨教育背景的智能游戏环境中使用多模式跟踪数据消除对病毒的误解
- 批准号:
10664776 - 财政年份:2023
- 资助金额:
$ 59.9万 - 项目类别:
Decoding ensemble dynamics from cortico-amygdalar circuits during social choice
在社会选择过程中从皮质-杏仁核回路解码整体动态
- 批准号:
10723932 - 财政年份:2023
- 资助金额:
$ 59.9万 - 项目类别:
CAREER: Sparse Model Selection for Nonlinear Evolution Equations
职业:非线性演化方程的稀疏模型选择
- 批准号:
2331100 - 财政年份:2022
- 资助金额:
$ 59.9万 - 项目类别:
Continuing Grant
CAREER: Deep Learning Empowered Nonlinear Deformable Model
职业:深度学习赋能非线性变形模型
- 批准号:
2301040 - 财政年份:2022
- 资助金额:
$ 59.9万 - 项目类别:
Continuing Grant
Systems Approach to Understanding Cardiovascular Disease and Arrhythmias - Cell diversity in the cardiovascular system, cell-autonomous and cell-cell signaling
了解心血管疾病和心律失常的系统方法 - 心血管系统中的细胞多样性、细胞自主和细胞间信号传导
- 批准号:
10386681 - 财政年份:2021
- 资助金额:
$ 59.9万 - 项目类别: