CAREER: Sparse Model Selection for Nonlinear Evolution Equations
职业:非线性演化方程的稀疏模型选择
基本信息
- 批准号:2331100
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-11-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Extracting information from stationary and/or dynamic data is an important task in many scientific and industrial problems; including but not limited to, machine learning, data mining, image processing, and automated analysis of scientific data. This project focuses on learning the underlying process that generates observational data, in a sense, "reverse-engineering" models from data. These models are often used to gain insights on the data (for example, determining mathematical principles from experimental observations) or to make data-enabled decisions (for example, trend prediction). This is a challenging mathematical and computational problem, since one often has limited information on the process beforehand and real data is often noisy and/or incomplete. The research objective is to construct efficient computational methods for learning generating functions. This will involve a variety of mathematical techniques centered around optimization and sampling theory. The educational objective is to provide advanced training to undergraduate and graduate students in order to prepare them for the U.S. STEM workforce. In particular, students will be mentored and trained through mathematical and computational research projects, collaborative summer programs, working groups, and advanced courses that integrate education and research.The goal is to develop computational methods for model learning, data analysis, and other machine learning tasks. The overall objectives include: (i) the construction of optimization models that use sparsity, smoothness, and randomness to supplement the learning, (ii) the design of efficient and provably convergent numerical methods, (iii) the development of methods that are robust to sample size and outliers, and (iv) the creation and implementation of activities for undergraduate and graduate students that integrate education and research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
从固定和/或动态数据中提取信息是许多科学和工业问题的重要任务;包括但不限于机器学习,数据挖掘,图像处理以及对科学数据的自动分析。该项目的重点是学习从数据中产生观察数据的基础过程,从而产生观察数据的“反向工程”模型。这些模型通常用于获得有关数据的见解(例如,从实验观察中确定数学原理)或做出支持数据的决策(例如,趋势预测)。这是一个具有挑战性的数学和计算问题,因为人们通常会事先对该过程的信息有限,而真实数据通常是嘈杂和/或不完整的。研究目标是构建用于学习生成功能的有效计算方法。这将涉及各种围绕优化和采样理论的数学技术。教育目标是为本科生和研究生提供高级培训,以便为美国STEM劳动力做好准备。特别是,将通过数学和计算研究项目,协作夏季计划,工作组以及整合教育和研究的高级课程对学生进行指导和培训。目标是开发用于模型学习,数据分析和其他机器学习任务的计算方法。 总体目标包括:(i)构建优化模型,这些模型使用稀疏性,平稳性和随机性来补充学习,(ii)设计有效且可证明的收敛性数值方法,(iii)开发样本大小和异常值和异常者的稳健性的方法,以及(iv)颁发律师和研究阶段的教育和研究阶段和研究的整体阶段和研究生阶段,并研究了阶段,并研究了阶段和研究的阶段,并研究了阶段和研究的阶段,并构成了阶段和研究的阶段。认为值得通过基金会的智力优点和更广泛影响的评论标准来评估值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hayden Schaeffer其他文献
Conditioning of random Fourier feature matrices: double descent and generalization error
随机傅立叶特征矩阵的调节:双下降和泛化误差
- DOI:
10.1093/imaiai/iaad054 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Zhijun Chen;Hayden Schaeffer - 通讯作者:
Hayden Schaeffer
Active arcs and contours
活动圆弧和轮廓
- DOI:
10.3934/ipi.2014.8.845 - 发表时间:
2014 - 期刊:
- 影响因子:1.3
- 作者:
Hayden Schaeffer - 通讯作者:
Hayden Schaeffer
Variational Models for Fine Structures
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Hayden Schaeffer - 通讯作者:
Hayden Schaeffer
PROSE: Predicting Multiple Operators and Symbolic Expressions using multimodal transformers
- DOI:
10.1016/j.neunet.2024.106707 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Yuxuan Liu;Zecheng Zhang;Hayden Schaeffer - 通讯作者:
Hayden Schaeffer
A penalty method for some nonlinear variational obstacle problems
一些非线性变分障碍问题的惩罚方法
- DOI:
10.4310/cms.2018.v16.n7.a1 - 发表时间:
2018 - 期刊:
- 影响因子:1
- 作者:
Hayden Schaeffer - 通讯作者:
Hayden Schaeffer
Hayden Schaeffer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hayden Schaeffer', 18)}}的其他基金
Collaborative Research: Randomized Feature Methods for Modeling and Dynamics: Theory and Algorithms
协作研究:建模和动力学的随机特征方法:理论和算法
- 批准号:
2331033 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Randomized Feature Methods for Modeling and Dynamics: Theory and Algorithms
协作研究:建模和动力学的随机特征方法:理论和算法
- 批准号:
2208339 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Sparse Model Selection for Nonlinear Evolution Equations
职业:非线性演化方程的稀疏模型选择
- 批准号:
1752116 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
相似国自然基金
疏筋解毒颗粒对PD模型大鼠线粒体功能及铁代谢通路FBXL5-IRP的干预机制研究
- 批准号:82374236
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
顶板水头控制疏降煤矿采空区超大井井流计算
- 批准号:41807221
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
莱姆关节炎中关节细胞因子微环境失调的机制及雪胆甲素的调节作用研究
- 批准号:81860644
- 批准年份:2018
- 资助金额:32.0 万元
- 项目类别:地区科学基金项目
舒郁安神方对MSG-肝再生-大鼠模型抑郁症关联脑区的干预作用与机制研究
- 批准号:81703973
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于情绪诱发实验构建人体肝郁状态模型及肝调畅情志与中枢自主网络的相关性研究
- 批准号:81373771
- 批准年份:2013
- 资助金额:68.0 万元
- 项目类别:面上项目
相似海外基金
Realization of sparse control with model predictive control and guarantee of its performance
模型预测控制稀疏控制的实现及其性能保证
- 批准号:
23K03916 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Large-scale sparse learning using asynchronous architecture for interpretable model
使用异步架构进行可解释模型的大规模稀疏学习
- 批准号:
23K11213 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
ATD: A model-assisted data-driven framework for prediction of rare extreme events from sparse measurements
ATD:模型辅助数据驱动框架,用于通过稀疏测量预测罕见极端事件
- 批准号:
2220548 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Fast Multi-dimensional Diffusion MRI with Sparse Sampling and Model-based Deep Learning Reconstruction
具有稀疏采样和基于模型的深度学习重建的快速多维扩散 MRI
- 批准号:
10428538 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Fast Multi-dimensional Diffusion MRI with Sparse Sampling and Model-based Deep Learning Reconstruction
具有稀疏采样和基于模型的深度学习重建的快速多维扩散 MRI
- 批准号:
10183606 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别: