Computational Techniques from Geometry and Statistical Physics for Optimal Prediction, Control and Wave Propagation
用于优化预测、控制和波传播的几何和统计物理计算技术
基本信息
- 批准号:0322683
- 负责人:
- 金额:$ 29.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-08-15 至 2005-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One part of this proposal is the formulation of statistical and statistical mechanics tools for solving problems of great complexity, where, in addition, there may be uncertainties in the formulation of the problems or a lack of data. The striking fact is that estimating the best solution in an appropriate norm to such problems is very closely related to the solution of difficult problems in irreversible statistical mechanics, a connection that can be expressed through a formalism of statistical projection, sometimes knows as the Mori-Zwanzig formalism. The use of this formalism brings in connections with renormalization, Langevin equations, and scaling procedures, which had to be made more rigorous, and which have now led to new approximation procedures and new formulations of optimal procedures. The first applications were in modeling problems, which could validate the new algorithms, and now the focus is evolving to applications in fluid mechanics, including viscoelastic flows, in plasma physics and in biology. The other part of the work is the linking of discrete network algorithms to geometric perspectives to obtain algorithms for efficiently solving problems in continuous partial differential equations. This has led, so far, to Ordered Upwind Methods for computing problems in optimal control and anisotropic front propagation, and static phase space solutions to Eulerian formulations for multiple arrivals in wave propagation, antenna design, and seismology. By exploiting an underlying ordering in the construction of the solution, determined by the flow of information along characteristics, "one pass" methods can be developed which construct the solution to these problems without iteration, and with a computational complexity that depends essentially linearly on the number of mesh points in the computational domain. These techniques will be extended to min/max problems that arise in non-convex games, with applications to complex control, to developing adaptive versions which allows us to compute six-dimensional robotic navigation problems in computer-aided machining, and, most importantly, in the application of multiple arrival techniques to inverse problems in tomography. The goal of this project is to devise new ways to use computers in the solution of problems which are very complex and that may contain various sources of uncertainty, because of lack of data, incomplete information about the factors that affect the solution, excessive requirements of computer time, or because they involve inherent chaotic behavior. From a practical point of view, the work so far has led to more accurate imaging techniques for predicting underground oil reserves and new techniques for cardiac imaging and automatic analysis of cell irregularities in electron microscopy. The coming methods will make it possible to interpret medical images more reliably, design computer chips even more efficiently, gain a better understanding of human physiology, avoid aircraft collisions even when the skies become very crowded, and predict climate more reliably.
该提案的一部分是制定统计和统计力学工具来解决非常复杂的问题,此外,问题的制定可能存在不确定性或缺乏数据。引人注目的事实是,在适当的规范中估计此类问题的最佳解决方案与解决不可逆统计力学中的难题密切相关,这种联系可以通过统计投影的形式主义(有时称为 Mori-Zwanzig 形式主义)来表达。这种形式主义的使用与重整化、朗之万方程和缩放程序联系在一起,这些程序必须变得更加严格,并且现在已经导致新的近似程序和最优程序的新表述。最初的应用是在建模问题中,这可以验证新算法,现在的重点正在发展到流体力学(包括粘弹性流)、等离子体物理学和生物学中的应用。工作的另一部分是将离散网络算法与几何视角联系起来,以获得有效解决连续偏微分方程问题的算法。到目前为止,这已经导致了用于计算最优控制和各向异性前沿传播问题的有序迎风方法,以及用于波传播、天线设计和地震学中多次到达的欧拉公式的静态相空间解决方案。通过利用解决方案构造中的底层排序(由沿特征的信息流确定),可以开发“一次性”方法,无需迭代即可构造这些问题的解决方案,并且计算复杂度基本上线性依赖于计算域中网格点的数量。这些技术将扩展到非凸游戏中出现的最小/最大问题,应用于复杂控制,开发自适应版本,使我们能够计算计算机辅助加工中的六维机器人导航问题,最重要的是,应用多到达技术来解决断层扫描中的反演问题。该项目的目标是设计新的方法来使用计算机解决非常复杂的问题,这些问题可能包含各种不确定性来源,因为缺乏数据、影响解决方案的因素的信息不完整、计算机时间要求过高,或者因为它们涉及固有的混沌行为。从实践的角度来看,迄今为止的工作已经带来了用于预测地下石油储量的更准确的成像技术以及心脏成像和电子显微镜中细胞不规则性自动分析的新技术。即将到来的方法将使我们能够更可靠地解释医学图像,更有效地设计计算机芯片,更好地了解人体生理学,即使在天空变得非常拥挤时也能避免飞机相撞,并更可靠地预测气候。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Sethian其他文献
Projection methods coupled to level set interface techniques
- DOI:
10.1016/s0021-9991(05)80011-7 - 发表时间:
1992-09-01 - 期刊:
- 影响因子:
- 作者:
Jingyi Zhu;James Sethian - 通讯作者:
James Sethian
James Sethian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Sethian', 18)}}的其他基金
Efficient Algorithms for Complex Multiphase Physics
复杂多相物理的高效算法
- 批准号:
1319276 - 财政年份:2013
- 资助金额:
$ 29.77万 - 项目类别:
Standard Grant
Efficient Algorithms for Interface Motion and Wave Propagation
界面运动和波传播的高效算法
- 批准号:
0713223 - 财政年份:2007
- 资助金额:
$ 29.77万 - 项目类别:
Continuing Grant
Efficient Algorithms for Interface Motion and Wave Propagation
界面运动和波传播的高效算法
- 批准号:
0410107 - 财政年份:2004
- 资助金额:
$ 29.77万 - 项目类别:
Continuing Grant
Interface and Evolution Methods For Semiconductor Processing
半导体处理的接口和演化方法
- 批准号:
0104445 - 财政年份:2001
- 资助金额:
$ 29.77万 - 项目类别:
Standard Grant
Mathematical Sciences: Computational Techniques from Geometry and Statistical Physics Applied to Fluid Mechanics and Interface Problems
数学科学:几何和统计物理的计算技术应用于流体力学和界面问题
- 批准号:
9504950 - 财政年份:1995
- 资助金额:
$ 29.77万 - 项目类别:
Continuing Grant
Level Set Algorithms for Image Analysis: Advanced Numerical Techniques for Shape and Character Recongnition and Recovery (Postdoctoral Research Associateship)
用于图像分析的水平集算法:形状和字符识别与恢复的高级数值技术(博士后研究助理)
- 批准号:
9404904 - 财政年份:1994
- 资助金额:
$ 29.77万 - 项目类别:
Standard Grant
Mathematical Sciences: Presidential Young Investigator Award
数学科学:总统青年研究员奖
- 批准号:
8657490 - 财政年份:1987
- 资助金额:
$ 29.77万 - 项目类别:
Continuing Grant
Mathematical Sciences Postdoctoral Research Fellowship
数学科学博士后研究奖学金
- 批准号:
8311671 - 财政年份:1983
- 资助金额:
$ 29.77万 - 项目类别:
Fellowship Award
相似国自然基金
EstimatingLarge Demand Systems with MachineLearning Techniques
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
相似海外基金
Group actions and symplectic techniques in Machine Learning and Computational Geometry
机器学习和计算几何中的群作用和辛技术
- 批准号:
RGPIN-2017-06901 - 财政年份:2022
- 资助金额:
$ 29.77万 - 项目类别:
Discovery Grants Program - Individual
Group actions and symplectic techniques in Machine Learning and Computational Geometry
机器学习和计算几何中的群作用和辛技术
- 批准号:
RGPIN-2017-06901 - 财政年份:2021
- 资助金额:
$ 29.77万 - 项目类别:
Discovery Grants Program - Individual
Group actions and symplectic techniques in Machine Learning and Computational Geometry
机器学习和计算几何中的群作用和辛技术
- 批准号:
RGPIN-2017-06901 - 财政年份:2020
- 资助金额:
$ 29.77万 - 项目类别:
Discovery Grants Program - Individual
Group actions and symplectic techniques in Machine Learning and Computational Geometry
机器学习和计算几何中的群行为和辛技术
- 批准号:
RGPIN-2017-06901 - 财政年份:2019
- 资助金额:
$ 29.77万 - 项目类别:
Discovery Grants Program - Individual
Group actions and symplectic techniques in Machine Learning and Computational Geometry
机器学习和计算几何中的群行为和辛技术
- 批准号:
RGPIN-2017-06901 - 财政年份:2018
- 资助金额:
$ 29.77万 - 项目类别:
Discovery Grants Program - Individual
AF: Small: Topological Approximation Techniques in Computational Geometry
AF:小:计算几何中的拓扑近似技术
- 批准号:
1718994 - 财政年份:2017
- 资助金额:
$ 29.77万 - 项目类别:
Standard Grant
Group actions and symplectic techniques in Machine Learning and Computational Geometry
机器学习和计算几何中的群行为和辛技术
- 批准号:
RGPIN-2017-06901 - 财政年份:2017
- 资助金额:
$ 29.77万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic techniques in computational geometry
计算几何中的算法技术
- 批准号:
228113-2000 - 财政年份:2004
- 资助金额:
$ 29.77万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic techniques in computational geometry
计算几何中的算法技术
- 批准号:
228113-2000 - 财政年份:2002
- 资助金额:
$ 29.77万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic techniques in computational geometry
计算几何中的算法技术
- 批准号:
228113-2000 - 财政年份:2001
- 资助金额:
$ 29.77万 - 项目类别:
Discovery Grants Program - Individual