New Computational Approaches for Markov Decision Processes
马尔可夫决策过程的新计算方法
基本信息
- 批准号:0323220
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-01-01 至 2008-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Developing practical computational solution methods for large-scale Markov Decision Processes (MDPs), also known as stochastic dynamic programming problems, remains an important and challenging research area. The complexity of many modern systems that can in principle be modeled using MDPs have resulted in models for which it is not possible to explicitly enumerate the transition probabilities, but for which sample paths can be easily generated, e.g., via a stochastic simulation model. The project research addresses two other distinct but crucial issues that arise: how best to allocate a computational budget that is used to generate sample paths, and how to produce a robust set of good policies directly (rather than indirectly via value function approximations). In particular, the main thrusts of our proposed approaches center on two distinct paradigms: effective sampling-based methodologies using multi-armed bandit models and induced correlation for value function estimation; and population-based approaches for finding improving policies, in contrast to the traditional policy iteration method, which iterates on a single policy. The latter thrust will focus on infinite horizon problems, where there is assumed an optimal stationary policy, whereas the former approaches are intended for finite horizon problems, where backwards induction dynamic programming must be employed. Algorithms will be developed and then analyzed in terms of their properties such as convergence rate and theoretical bounds on performance, followed by testing on specific application areas to investigate their practical utility. Specific problem domains include the pricing of American-style financial derivatives; capacity planning and preventive maintenance in manufacturing systems; and communication networks.
开发大规模马尔可夫决策过程(mdp)的实用计算解决方法,也称为随机动态规划问题,仍然是一个重要而具有挑战性的研究领域。许多现代系统的复杂性,原则上可以使用mdp建模,导致模型不可能明确地枚举转移概率,但样本路径可以很容易地生成,例如,通过随机模拟模型。该项目研究解决了另外两个截然不同但至关重要的问题:如何最好地分配用于生成样本路径的计算预算,以及如何直接(而不是通过值函数近似间接)生成一组健壮的良好策略。特别是,我们提出的方法的主要重点集中在两个不同的范式上:有效的基于抽样的方法,使用多臂强盗模型和价值函数估计的诱导相关性;以及基于人口的方法来寻找改进的政策,与传统的政策迭代方法相反,传统的政策迭代方法是在单个政策上迭代。后一种方法将集中于无限视界问题,其中存在假设的最优平稳策略,而前一种方法旨在解决有限视界问题,其中必须采用向后归纳动态规划。将开发算法,然后根据其特性(如收敛速度和性能的理论界限)进行分析,然后在特定应用领域进行测试,以调查其实际效用。具体的问题领域包括美式金融衍生品的定价;生产系统的产能规划和预防性维护;还有通讯网络。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Fu其他文献
Association between Body Mass Index and Risk of Aortic Stenosis in Women
女性体重指数与主动脉瓣狭窄风险之间的关系
- DOI:
10.1101/2023.09.26.23296191 - 发表时间:
2023 - 期刊:
- 影响因子:2.5
- 作者:
S. Kontogeorgos;Annika Rosengren;T. Z. Sandström;Michael Fu;Martin Lindgren;C. Md;M. Md;MD PhD Demir Djekic;E. Thunström - 通讯作者:
E. Thunström
Cartilage-Preserving Arthroscopic-Assisted Radiofrequency Ablation of Periacetabular Osteoid Osteoma in a Young Adult Hip
- DOI:
10.1016/j.eats.2020.03.024 - 发表时间:
2020-07-01 - 期刊:
- 影响因子:
- 作者:
Alexander C. Newhouse;Daniel M. Wichman;Michael Fu;Shane J. Nho - 通讯作者:
Shane J. Nho
A Formal Explainer for Just-In-Time Defect Predictions
即时缺陷预测的正式解释器
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:4.4
- 作者:
Jinqiang Yu;Michael Fu;Alexey Ignatiev;C. Tantithamthavorn;Peter J. Stuckey - 通讯作者:
Peter J. Stuckey
Impact-based forecasting for improving the capacity of typhoon-related disaster risk reduction in typhoon committee region
- DOI:
10.1016/j.tcrr.2022.09.003 - 发表时间:
2022-09-01 - 期刊:
- 影响因子:
- 作者:
Jixin Yu;Jinping Liu;Ji-Won Baek;Clarence Fong;Michael Fu - 通讯作者:
Michael Fu
Proactive resource provisioning
主动资源配置
- DOI:
10.1016/j.comcom.2004.02.019 - 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
E. Chi;Michael Fu;J. Walrand - 通讯作者:
J. Walrand
Michael Fu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Fu', 18)}}的其他基金
Collaborative Research: SCH: Optimal Desensitization Protocol in Support of a Kidney Paired Donation (KPD) System
合作研究:SCH:支持肾脏配对捐赠 (KPD) 系统的最佳脱敏方案
- 批准号:
2123684 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Maintaining volitional effort during electrical stimulation-assisted stroke rehabilitation
职业:在电刺激辅助中风康复期间保持意志力
- 批准号:
1942402 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Continuing Grant
New Approaches for Simulation-Based Optimal Decision Making
基于仿真的最优决策的新方法
- 批准号:
1434419 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
New Simulation-Based Approaches to Solving Markov Decision Processes
解决马尔可夫决策过程的基于仿真的新方法
- 批准号:
9988867 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Continuing Grant
U. S. - France (INRIA) Cooperative Research Improving the Efficiency of Manufacturing Systems by Integrating Production Control into Maintenance Policies
美国-法国 (INRIA) 合作研究通过将生产控制纳入维护策略来提高制造系统的效率
- 批准号:
0070866 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Standard Grant
U.S.-France Cooperative Research (INRIA): Perturbation Analysis and Parallel Computing for Production Management
美法合作研究(INRIA):生产管理的扰动分析和并行计算
- 批准号:
9402580 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
PINK - Provision of Integrated Computational Approaches for Addressing New Markets Goals for the Introduction of Safe-and-Sustainable-by-Design Chemicals and Materials
PINK - 提供综合计算方法来解决引入安全和可持续设计化学品和材料的新市场目标
- 批准号:
10097944 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
High fidelity computational approaches to exploit new structures of cardiac ion channels
高保真计算方法开发心脏离子通道的新结构
- 批准号:
NC/W001500/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Training Grant
New approaches to computational natural language processing using ancient Near Eastern text corpora
使用古代近东文本语料库进行计算自然语言处理的新方法
- 批准号:
547773-2020 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Using new Earth observation and computational approaches to map dry forests and their carbon dynamics across the tropics
使用新的地球观测和计算方法绘制热带地区的干燥森林及其碳动态图
- 批准号:
2750363 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
New Cell Type-Specific Data Sets and Computational Approaches for Plant Stress Biology
植物逆境生物学的新细胞类型特异性数据集和计算方法
- 批准号:
RGPIN-2016-06483 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
New approaches to computational natural language processing using ancient Near Eastern text corpora
使用古代近东文本语料库进行计算自然语言处理的新方法
- 批准号:
547773-2020 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
New Cell Type-Specific Data Sets and Computational Approaches for Plant Stress Biology
植物逆境生物学的新细胞类型特异性数据集和计算方法
- 批准号:
RGPIN-2016-06483 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
New approaches to computational natural language processing using ancient Near Eastern text corpora
使用古代近东文本语料库进行计算自然语言处理的新方法
- 批准号:
547773-2020 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Integrating Computational and Experimental Approaches for New Paradigms in Molecule Synthesis
整合计算和实验方法以实现分子合成的新范式
- 批准号:
19KK0150 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
New Cell Type-Specific Data Sets and Computational Approaches for Plant Stress Biology
植物逆境生物学的新细胞类型特异性数据集和计算方法
- 批准号:
RGPIN-2016-06483 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




