Foundations for Discrete Event Stochastic Systems
离散事件随机系统的基础
基本信息
- 批准号:0323765
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-09-01 至 2008-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In simulating the resource cycles in general queuing networks, the system state can be represented by integer arrays. Running these simulations amounts to increasing and decreasing the values of elements in these arrays at specific event times. The dynamics of many of these simulations can be formulated as linear and mixed-integer programs. The solutions to the mathematical programs are identical to the state trajectories generated by running the simulation. The variables in these mathematical programs are the event times. Relationships between system events constrain these event times. The objective of the mathematical program, like in a system simulation, is to execute events as soon as possible subject to the constraints imposed by the logic and dynamics of the system. The project objective is to produce a methodology for modeling discrete event dynamic systems as combinatorial optimization problems. The approach is derived from a simulation modeling technique that was developed in an ad-hoc manner to solve specific large-scale engineering problems. This research will study the theoretical and practical foundations of this modeling methodology in a generic context.Many complex systems, including health care delivery, transportation, communication and production systems, can be effectively modeled as undergoing discrete changes that take place when particular events occur. These systems can be simulated by scheduling events on a computer that mimic the occurrences of these events in the real system. In this research, discrete event systems will be modeled using the optimization tools and techniques of operations research. This will allow the rich theory and algorithms of mathematical and stochastic programming to be applied to the modeling and analysis of this large and important class of dynamic systems.
在模拟一般排队网络中的资源周期时,系统状态可以用整数数组来表示。运行这些模拟相当于在特定事件时间增加和减少这些数组中的元素的值。这些模拟中的许多动态可以用线性和混合整数规划来表示。数学程序的解与运行模拟生成的状态轨迹相同。这些数学程序中的变量是事件时间。系统事件之间的关系限制了这些事件时间。与系统模拟一样,数学程序的目标是在系统的逻辑和动态施加的约束下尽可能快地执行事件。该项目的目标是提出一种将离散事件动态系统建模为组合优化问题的方法。这种方法是从一种模拟建模技术衍生出来的,这种模拟建模技术是以特别的方式开发的,以解决特定的大型工程问题。这项研究将在一般情况下研究这种建模方法的理论和实践基础。许多复杂系统,包括医疗保健提供、运输、通信和生产系统,可以有效地建模为正在经历离散变化,这些变化发生在特定事件发生时。可以通过在计算机上安排事件来模拟这些系统,该计算机模仿真实系统中这些事件的发生。在这项研究中,离散事件系统将使用运筹学的优化工具和技术进行建模。这将使数学和随机规划的丰富理论和算法应用于这一大类和重要的动态系统的建模和分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lee Schruben其他文献
Lee Schruben的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lee Schruben', 18)}}的其他基金
EAGER: Integrated Simulation Models, Experiments, and Optimization
EAGER:集成仿真模型、实验和优化
- 批准号:
1153694 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Standard Grant
Operational Methods in Semiconductor Manufacturing: Methods for Modeling Stochastic Processes in Semiconductor Manufacturing
半导体制造中的操作方法:半导体制造中随机过程的建模方法
- 批准号:
0296096 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Cooperative Agreement
Operational Methods in Semiconductor Manufacturing: Methodsfor Modeling Stochastic Processes in Semiconductor Manufacturing
半导体制造中的操作方法:半导体制造中随机过程的建模方法
- 批准号:
9713549 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Cooperative Agreement
Modeling Foundations for Discrete Event Simulations
离散事件模拟的建模基础
- 批准号:
9322712 - 财政年份:1994
- 资助金额:
-- - 项目类别:
Continuing grant
Graph Structures for Discrete Event Simulation
离散事件模拟的图形结构
- 批准号:
8810517 - 财政年份:1988
- 资助金额:
-- - 项目类别:
Standard Grant
Research Initiation - Initialization Bias in Simulation Experiments
研究启动——模拟实验中的初始化偏差
- 批准号:
7706119 - 财政年份:1977
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Cyber-secure and Resilient Supervisory Control of Networked Discrete-Event Systems
合作研究:网络离散事件系统的网络安全和弹性监督控制
- 批准号:
2146615 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Automatic Computational Understanding and Manipulation of Finite Discrete-Event Dynamical Systems throughout Natural Sciences and Engineering
整个自然科学和工程领域有限离散事件动力系统的自动计算理解和操纵
- 批准号:
RGPIN-2019-04669 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Distributed Discrete-Event Systems: the design of security and privacy for cyber-physical systems
分布式离散事件系统:网络物理系统的安全和隐私设计
- 批准号:
RGPIN-2019-05966 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Cyber-secure and Resilient Supervisory Control of Networked Discrete-Event Systems
合作研究:网络离散事件系统的网络安全和弹性监督控制
- 批准号:
2144416 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Keeping Secrets: Realizing the Potential of Decentralized Discrete-Event Systems
保守秘密:实现去中心化离散事件系统的潜力
- 批准号:
RGPIN-2020-04279 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Advanced Methodologies for Real-Time Discrete Event Modelling and Simulation
实时离散事件建模和仿真的先进方法
- 批准号:
RGPIN-2022-05133 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Supervisory Control of Timed Discrete Event Systems Based on Bisimulation
基于互仿真的定时离散事件系统监控
- 批准号:
22K04167 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Modelling COVID-19-Related Nursing Workloads using Discrete Event Simulation
使用离散事件模拟对 COVID-19 相关护理工作负载进行建模
- 批准号:
565583-2021 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Complexity and Implementation for Discrete-Event Systems
离散事件系统的复杂性和实现
- 批准号:
RGPIN-2017-05267 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Envisioned world problems with functional approaches: Functional Analysis Resonance Method and Discrete-Event Simulation modelling for system design, verification, and improvement
使用功能方法设想世界问题:用于系统设计、验证和改进的功能分析共振方法和离散事件仿真建模
- 批准号:
21F21757 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows