Automatic Computational Understanding and Manipulation of Finite Discrete-Event Dynamical Systems throughout Natural Sciences and Engineering
整个自然科学和工程领域有限离散事件动力系统的自动计算理解和操纵
基本信息
- 批准号:RGPIN-2019-04669
- 负责人:
- 金额:$ 5.9万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Understanding and predictively manipulating an important class of models, finitary discrete-event dynamical systems, still lacks adequate predictive frameworks for knowledge users and scientists (in contrast to continuous dynamical systems where calculus, linear algebra, superposition principles and well-developed engineering computational tools are available and have been developed over the last several centuries). Groundwork for deep understanding of finite discrete-event dynamical systems exists in its basic mathematical underpinnings, but this needs to be nurtured into a paradigm of practice with an applicable body of methodological, computational and mathematical tools (1) to be widely exploited throughout Science and Engineering, and (2) to augment AI and human cognitive capabilities. Finite discrete-event dynamical systems models are ubiquitous throughout natural science and engineering: Common modelling techniques include the use of finite automata, Petri nets, reaction networks in biology and chemistry, genetic regulatory networks, Boolean and multivalued logic networks, cortical column neural models, graph-theoretically described systems with different transition types and time-scales, and dynamic networks (whose state-spaces may grow or shrink adaptively, while remaining finite). All are increasingly prevalent computational models that transform in response to external events and internal transitions. This research will create 21st century computational tools rooted in rigorous 19th and 20th century theorems from the mathematical theory of symmetry and algebraic theory of automata that guarantee it is always possible to create a global, hierarchically organized system of coordinates for a given finite (and often infinite) discrete-event dynamical system. These computational coordinate systems will allow one to 'navigate' a given discrete event system, to know the 'latitude and longitude' of a system state, and how to transform it by a sequence of steps into another desired state. A special case is what the decimal expansion does for arithmetic: one can calculate in a positional notation, following highly restricted 'carry laws' that relate change in values along the hierarchy of positions, where change of value is computed in a simple way, e.g. adding single digits, one-by-one. Such an abstract representation of global system state in a coarse-to-fine manner is possible (not just for numbers), but for any finite discrete-event system, and could facilitate easy manipulation in sample applications such as how to: -let AI automatically integrate diverse information to recommend strategies and discrete moves to achieve a desired goal -in a strategic situation / tactical game, concisely represent state of play in compact informative form for a human operator to move effectively to a desired configuration -manipulate a cancerous cell to induce it to approach to a non-malignant state by systematically 'adjusting' its state coordinates.
理解和预测操纵一类重要的模型,有限离散事件动力系统,仍然缺乏足够的预测框架的知识用户和科学家(与连续动力系统相比,微积分,线性代数,叠加原理和发达的工程计算工具是可用的,并已在过去几个世纪的发展)。深入理解有限离散事件动力系统的基础存在于其基本的数学基础中,但这需要通过一系列适用的方法,计算和数学工具来培养实践范式(1)在整个科学和工程中广泛利用,(2)增强人工智能和人类认知能力。有限离散事件动态系统模型在自然科学和工程中无处不在:常见的建模技术包括使用有限自动机、Petri网、生物学和化学中的反应网络、遗传调控网络、布尔和多值逻辑网络、皮质柱神经模型、具有不同过渡类型和时间尺度的图论描述系统,以及动态网络(其状态空间可以自适应地增长或收缩,同时保持有限)。所有这些都是越来越流行的计算模型,它们会随着外部事件和内部转变而发生变化。这项研究将创建21世纪世纪的计算工具植根于严格的19和20世纪世纪定理从对称性的数学理论和代数理论的自动机,保证它总是可以创建一个全球性的,分层组织的坐标系统为一个给定的有限(往往是无限的)离散事件动力系统。这些计算坐标系统将允许一个“导航”一个给定的离散事件系统,知道一个系统状态的“纬度和经度”,以及如何通过一系列步骤将其转换为另一个所需的状态。一个特殊的情况是十进制展开式对算术的作用:人们可以用位置记法进行计算,遵循高度限制的“进位定律”,该定律将值的变化沿着位置的层次关系,其中值的变化以简单的方式计算,例如逐个添加个位数。这样一种从粗到细的全局系统状态的抽象表示是可能的(不仅仅是数字),而且适用于任何有限离散事件系统,并且可以在示例应用程序中方便操作,例如如何:- 让AI自动整合各种信息,以推荐策略和离散动作,以实现预期目标-在战略情况/战术游戏中,以紧凑信息形式简明地表示人类操作者有效地移动到期望配置的游戏状态-通过系统地“调整”癌细胞的状态坐标来操纵癌细胞以诱导其接近非恶性状态。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nehaniv, Chrystopher其他文献
Nehaniv, Chrystopher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nehaniv, Chrystopher', 18)}}的其他基金
Automatic Computational Understanding and Manipulation of Finite Discrete-Event Dynamical Systems throughout Natural Sciences and Engineering
整个自然科学和工程领域有限离散事件动力系统的自动计算理解和操纵
- 批准号:
RGPIN-2019-04669 - 财政年份:2021
- 资助金额:
$ 5.9万 - 项目类别:
Discovery Grants Program - Individual
Automatic Computational Understanding and Manipulation of Finite Discrete-Event Dynamical Systems throughout Natural Sciences and Engineering
整个自然科学和工程领域有限离散事件动力系统的自动计算理解和操纵
- 批准号:
RGPIN-2019-04669 - 财政年份:2020
- 资助金额:
$ 5.9万 - 项目类别:
Discovery Grants Program - Individual
Automatic Computational Understanding and Manipulation of Finite Discrete-Event Dynamical Systems throughout Natural Sciences and Engineering
整个自然科学和工程领域有限离散事件动力系统的自动计算理解和操纵
- 批准号:
RGPIN-2019-04669 - 财政年份:2019
- 资助金额:
$ 5.9万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Computational approach to security dilemma: understanding state rivalry through multilingual longitudinal analysis of foreign news
解决安全困境的计算方法:通过外国新闻的多语言纵向分析来理解国家竞争
- 批准号:
23K25490 - 财政年份:2024
- 资助金额:
$ 5.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
- 批准号:
2148678 - 财政年份:2023
- 资助金额:
$ 5.9万 - 项目类别:
Standard Grant
Understanding of cholesterol transporter mechanisms via HS-AFM and computational modeling
通过 HS-AFM 和计算模型了解胆固醇转运机制
- 批准号:
22KF0153 - 财政年份:2023
- 资助金额:
$ 5.9万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Understanding the effect of mutations on cell behaviour in blood disorders through mathematical modelling and computational analysis
通过数学建模和计算分析了解突变对血液疾病细胞行为的影响
- 批准号:
2887435 - 财政年份:2023
- 资助金额:
$ 5.9万 - 项目类别:
Studentship
Computational approach to security dilemma: understanding state rivalry through multilingual longitudinal analysis of foreign news
解决安全困境的计算方法:通过外国新闻的多语言纵向分析来理解国家竞争
- 批准号:
23H00793 - 财政年份:2023
- 资助金额:
$ 5.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Understanding the computational principle of visual objects
理解视觉对象的计算原理
- 批准号:
23H03698 - 财政年份:2023
- 资助金额:
$ 5.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Understanding functional performance in bird skulls: advanced computational modelling to investigate cranial biomechanics and kinesis
了解鸟类头骨的功能表现:研究颅骨生物力学和运动的先进计算模型
- 批准号:
BB/X014479/1 - 财政年份:2023
- 资助金额:
$ 5.9万 - 项目类别:
Research Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
- 批准号:
2148646 - 财政年份:2023
- 资助金额:
$ 5.9万 - 项目类别:
Standard Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
- 批准号:
2328533 - 财政年份:2023
- 资助金额:
$ 5.9万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: SPRF: Taking a Computational Approach to Understanding Schema-Memory Interactions
博士后奖学金:SPRF:采用计算方法来理解模式内存交互
- 批准号:
2313703 - 财政年份:2023
- 资助金额:
$ 5.9万 - 项目类别:
Fellowship Award