Higher-Order Finite Element-Moment Method Modeling Techniques for Conformal Antenna Applications
共形天线应用的高阶有限元矩法建模技术
基本信息
- 批准号:0324345
- 负责人:
- 金额:$ 24.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-09-01 至 2006-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0324345NotarosThe central goal of the proposed research is the development of a new, highly efficient and accurate, hybrid higher-order computational electromagnetics (CEM) method for modeling, analysis, and design of conformal antennas. Conformal antennas have many advantages over traditional protruding antennas because of their low weight, low drag, low cost, unobtrusive nature, and great flexibility. A new higher-order finite element method (FEM) and a new higher-order method of moments (MoM) will be developed, and the two methods will be hybridized into a higher-order FEM-MoM method of great capabilities. The modeling techniques will use generalized hexahedral finite elements and generalized quadrilateral boundary elements of higher geometrical orders in conjunction with higher-order hierarchical field/current basis functions. The new MoM will employ the surface integral equation formulation using Green's functions for free-space or unbounded homogeneous media, thus avoiding use of the dyadic Green's function (for canonical geometries). The new FEM-MoM method will enable modeling of cavity-backed conformal antennas with arbitrary material complexities that are conformal to platforms of arbitrary (canonical and noncanonical) shapes and with possible material overlays. In the final stage of the project, FEM-MoM will be hybridized with the physical optics (PO) method, which will enable efficient modeling of conformal antennas on very large platforms. Finally, conformal patch and slot cavity-backed antennas on vehicles will be analyzed by the new FEM-MoM-PO method. Experimental validation of the new simulation techniques will be carried out in the newly established Telecommunications (Antenna) Laboratory within the new Advanced Technology and Manufacturing Center (ATMC) at the University of Massachusetts Dartmouth. All educational aspects of this proposal are fully integrated with the proposed research. Two Ph.D. graduate students will work on the project as research assistants supported by this proposed grant for three years. A number of other graduate and undergraduate students will be engaged in the project periodically, thorough course projects and seminars. The results of this proposed CEM research will be disseminated broadly, at all stages of the project. The application to modeling and characterization of conformal antennas is also of a broad interest, because of their great practical importance to modern wireless systems. It is likely that findings of this research will be useful to other researchers in their own endeavors in CEM, as well as in other computational disciplines of science and engineering, in both FEM and MoM (or boundary element method) applications. Every possible effort will be made to broaden the participation from underrepresented groups in the proposed activities.
0324345 NotarosThe拟议的研究的中心目标是开发一种新的,高效和准确的,混合高阶计算电磁学(CEM)的建模,分析和共形天线的设计方法。共形天线由于其重量轻、阻力小、成本低、不显眼和灵活性大而具有许多优于传统突出天线的优点。本文提出了一种新的高阶有限元法和高阶矩量法,并将这两种方法杂交为一种具有强大计算能力的高阶有限元-矩量法。建模技术将使用广义六面体有限元和广义四边形边界元的更高的几何阶数与高阶层次场/电流基函数。新的矩量法将采用表面积分方程公式,使用绿色的自由空间或无界均匀介质的功能,从而避免使用并矢绿色的功能(规范的几何形状)。新的FEM-MoM方法将能够对具有任意材料复杂性的背腔共形天线进行建模,这些材料复杂性与任意(规范和非规范)形状的平台共形,并具有可能的材料覆盖。在项目的最后阶段,FEM-MoM将与物理光学(PO)方法混合,这将使在非常大的平台上的共形天线的有效建模成为可能。最后,本文将用新的FEM-MoM-PO方法分析车载共形贴片和缝隙背腔天线。将在马萨诸塞州达特茅斯大学新的先进技术和制造中心内新设立的电信(天线)实验室进行新模拟技术的实验验证。这项建议的所有教育方面都与拟议的研究完全结合在一起。两个博士研究生将以研究助理的身份参与这项计划,为期三年。其他一些研究生和本科生将定期参与该项目,深入的课程项目和研讨会。将在项目的所有阶段广泛传播拟议的CEM研究结果。共形天线的建模和表征的应用也是一个广泛的兴趣,因为他们的现代无线系统的实际重要性。这是可能的,这项研究的结果将是有用的其他研究人员在自己的努力在CEM,以及在其他计算学科的科学和工程,在有限元和MoM(或边界元法)的应用。将尽一切努力扩大代表性不足的群体对拟议活动的参与。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Branislav Notaros其他文献
Branislav Notaros的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Branislav Notaros', 18)}}的其他基金
CDS&E: ECCS: Accurate and Efficient Uncertainty Quantification and Reliability Assessment for Computational Electromagnetics and Engineering
CDS
- 批准号:
2305106 - 财政年份:2023
- 资助金额:
$ 24.34万 - 项目类别:
Standard Grant
Novel Integrated Characterization of Microphysical Properties of Ice Particles Using In-Situ Field Measurements and Polarimetric Radar Observations
利用原位现场测量和偏振雷达观测对冰粒微物理特性进行新颖的综合表征
- 批准号:
2029806 - 财政年份:2020
- 资助金额:
$ 24.34万 - 项目类别:
Standard Grant
Novel RF Volume Coils for High and Ultra-High Field Magnetic Resonance Imaging Scanners
用于高场和超高场磁共振成像扫描仪的新型射频体积线圈
- 批准号:
1810492 - 财政年份:2018
- 资助金额:
$ 24.34万 - 项目类别:
Standard Grant
Accurate Characterization of Winter Precipitation Using Multi-Angle Snowflake Camera, Visual Hull, Advanced Scattering Methods, and Polarimetric Radar
使用多角度雪花相机、视觉船体、先进散射方法和偏振雷达准确表征冬季降水
- 批准号:
1344862 - 财政年份:2013
- 资助金额:
$ 24.34万 - 项目类别:
Continuing Grant
Collaborative Research: Electromagnetic Field Profile Design for Next-Generation Travelling-Wave MRI
合作研究:下一代行波 MRI 的电磁场轮廓设计
- 批准号:
1307863 - 财政年份:2013
- 资助金额:
$ 24.34万 - 项目类别:
Standard Grant
Diakoptic Approach to Modeling and Design of Complex Electromagnetic Systems
复杂电磁系统建模和设计的透光方法
- 批准号:
1002385 - 财政年份:2010
- 资助金额:
$ 24.34万 - 项目类别:
Standard Grant
Higher-Order Finite Element-Moment Method Modeling Techniques for Conformal Antenna Applications
共形天线应用的高阶有限元矩法建模技术
- 批准号:
0647380 - 财政年份:2006
- 资助金额:
$ 24.34万 - 项目类别:
Continuing Grant
Efficient Higher Order Techniques for Electromagnetic Modeling and Design of Photonic Crystal Structures
用于电磁建模和光子晶体结构设计的高效高阶技术
- 批准号:
0621987 - 财政年份:2006
- 资助金额:
$ 24.34万 - 项目类别:
Standard Grant
Efficient Higher Order Techniques for Electromagnetic Modeling and Design of Photonic Crystal Structures
用于电磁建模和光子晶体结构设计的高效高阶技术
- 批准号:
0650719 - 财政年份:2006
- 资助金额:
$ 24.34万 - 项目类别:
Standard Grant
Large-Domain Hybrid Moment Method-Physical Optics Techniques for Efficient and Accurate Electromagnetic Modeling of Cars and Aircraft over a Wide Range of Frequencies
大域混合矩法-物理光学技术,用于在宽频率范围内对汽车和飞机进行高效准确的电磁建模
- 批准号:
0115756 - 财政年份:2001
- 资助金额:
$ 24.34万 - 项目类别:
Standard Grant
相似国自然基金
基于Order的SIS/LWE变体问题及其应用
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
Poisson Order, Morita 理论,群作用及相关课题
- 批准号:19ZR1434600
- 批准年份:2019
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Robust and Efficient Finite Element Discretizations for Higher-Order Gradient Formulations
高阶梯度公式的稳健且高效的有限元离散化
- 批准号:
392564687 - 财政年份:2017
- 资助金额:
$ 24.34万 - 项目类别:
Priority Programmes
Higher Order Variational Inequalities: Novel Finite Element Methods and Fast Solvers
高阶变分不等式:新颖的有限元方法和快速求解器
- 批准号:
1620273 - 财政年份:2016
- 资助金额:
$ 24.34万 - 项目类别:
Continuing Grant
Higher order Unfitted Finite Element Methods for moving domain problems
移动域问题的高阶不拟合有限元方法
- 批准号:
319609890 - 财政年份:2016
- 资助金额:
$ 24.34万 - 项目类别:
Research Grants
Finite Element Methods for Higher Order Variational Inequalities
高阶变分不等式的有限元方法
- 批准号:
1319172 - 财政年份:2013
- 资助金额:
$ 24.34万 - 项目类别:
Standard Grant
Toward the Nyquist two points per wavelength efficient Finite-Difference Time-Domain scheme without higher order terms
走向奈奎斯特每波长两点高效有限差分时域方案,无需高阶项
- 批准号:
388747-2010 - 财政年份:2011
- 资助金额:
$ 24.34万 - 项目类别:
Postdoctoral Fellowships
Introducing nonuniform meshes into higher order finite difference time domain methodes by using coordinate system transformations
利用坐标系变换将非均匀网格引入高阶有限差分时域方法
- 批准号:
363387-2008 - 财政年份:2010
- 资助金额:
$ 24.34万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Toward the Nyquist two points per wavelength efficient Finite-Difference Time-Domain scheme without higher order terms
走向奈奎斯特每波长两点高效有限差分时域方案,无需高阶项
- 批准号:
388747-2010 - 财政年份:2010
- 资助金额:
$ 24.34万 - 项目类别:
Postdoctoral Fellowships
Introducing nonuniform meshes into higher order finite difference time domain methodes by using coordinate system transformations
利用坐标系变换将非均匀网格引入高阶有限差分时域方法
- 批准号:
363387-2008 - 财政年份:2009
- 资助金额:
$ 24.34万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Investigation of higher-order-finite-difference methods
高阶有限差分方法的研究
- 批准号:
369312-2008 - 财政年份:2008
- 资助金额:
$ 24.34万 - 项目类别:
University Undergraduate Student Research Awards
Introducing nonuniform meshes into higher order finite difference time domain methodes by using coordinate system transformations
利用坐标系变换将非均匀网格引入高阶有限差分时域方法
- 批准号:
363387-2008 - 财政年份:2008
- 资助金额:
$ 24.34万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral