Finite Element Methods for Higher Order Variational Inequalities
高阶变分不等式的有限元方法
基本信息
- 批准号:1319172
- 负责人:
- 金额:$ 24.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-15 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Elliptic variational inequalities are fundamental mathematical tools for modeling phenomena that involve elliptic partial differential operators and constrained optimization. This project will develop and analyze finite element methods for fourth and higher order elliptic variational inequalities, which arise naturally for example in mechanics and elliptic optimal control problems. A recent theoretical advance by the PIs demonstrates that, for the displacement obstacle problems of Kirchhoff plates, the heart of the error analysis involves only problems at the continuous level and therefore any finite element method that works for fourth order boundary value problems can also be adapted for obstacle problems. This new approach will be extended to other fourth and higher order variational inequalities with different types of constraints, which will bring well-developed finite element methodologies for boundary value problems (conforming and nonconforming methods, discontinuous Galerkin methods, generalized finite element methods, isoparametric finite element methods, local mesh refinement, singular function method, etc.) into the study of numerical solution of higher order variational inequalities. Fast solvers for higher order variational inequalities, such as multigrid methods, domain decomposition methods and adaptive methods, will also be developed. In particular this project will lead to new algorithms for second order elliptic distributed optimal control problems with pointwise state and/or control constraints that are fundamentally different from existing algorithms. The results from this project will provide new insights to the numerical solution of higher order variational inequalities, an area that is becoming increasingly important as more and more complex phenomena in science, engineering and finance are being modeled by higher order differential equations. The outcomes of this project will impact diverse areas that require reliable and efficient numerical algorithms for the solution of such inequalities.
椭圆变分不等式是对椭圆偏微分算子和约束优化等现象进行建模的基本数学工具。该项目将开发和分析四阶和高阶椭圆变分不等式的有限元方法,这些方法通常出现在力学和椭圆最优控制问题中。pi最近的一项理论进展表明,对于Kirchhoff板的位移障碍问题,误差分析的核心只涉及连续水平的问题,因此任何适用于四阶边值问题的有限元方法也可以适用于障碍问题。这种新方法将扩展到其他具有不同类型约束的四阶和高阶变分不等式,这将为边值问题带来良好的有限元方法(符合和非符合方法、不连续伽辽金方法、广义有限元方法、等参有限元方法、局部网格精化、奇异函数方法、等)纳入高阶变分不等式数值解的研究。高阶变分不等式的快速求解方法,如多网格方法、域分解方法和自适应方法,也将得到发展。特别是,该项目将导致与现有算法根本不同的具有点态和/或控制约束的二阶椭圆分布最优控制问题的新算法。该项目的结果将为高阶变分不等式的数值解提供新的见解,随着越来越多的科学、工程和金融领域的复杂现象被高阶微分方程建模,这一领域正变得越来越重要。该项目的成果将影响需要可靠和有效的数值算法来解决此类不等式的各个领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Susanne Brenner其他文献
Computer-assisted medical history taking prior to patient consultation in the outpatient care setting: a prospective pilot project
- DOI:
10.1186/s12913-024-12043-3 - 发表时间:
2024-12-18 - 期刊:
- 影响因子:3.000
- 作者:
Roman Hauber;Maximilian Schirm;Mirco Lukas;Clemens Reitelbach;Jonas Brenig;Margret Breunig;Susanne Brenner;Stefan Störk;Frank Puppe - 通讯作者:
Frank Puppe
HEART FAILURE MEDICATION IN THE EXTENDED RANDOMIZED INH STUDY: CLINICAL OUTCOMES ACCORDING TO PRESCRIPTION FREQUENCY AND DOSING OF GUIDELINE-RECOMMENDED DRUGS
- DOI:
10.1016/s0735-1097(13)60764-0 - 发表时间:
2013-03-12 - 期刊:
- 影响因子:
- 作者:
Guelmisal Gueder;Stefan Stoerk;Goetz Gelbrich;Susanne Brenner;Caroline Morbach;Dominik Berliner;Ertl Georg;Christiane E. Angermann - 通讯作者:
Christiane E. Angermann
OBSTRUCTIVE VENTILATORY DISORDER IN HEART FAILURE: NOT ALWAYS COPD!
- DOI:
10.1016/s0735-1097(10)61263-6 - 发表时间:
2010-03-09 - 期刊:
- 影响因子:
- 作者:
Susanne Brenner;Gülmisal Güder;Kilian Frö;hlich;Gö;tz Gelbrich;Roland Jahns;Berthold Jany;Georg Ertl;Christiane E. Angermann;Stefan Stö;rk - 通讯作者:
Stefan Stö;rk
PREVALENCE AND PROGNOSTIC IMPACT OF ANEMIA AND RENAL INSUFFICIENCY: RELATION TO HEART FAILURE SEVERITY
- DOI:
10.1016/s0735-1097(11)60374-4 - 发表时间:
2011-04-05 - 期刊:
- 影响因子:
- 作者:
Gulmisal Guder;Goetz Gelbrich;Susanne Brenner;Burkert Pieske;Rolf Wachter;Frank Edelmann;Bernhard Maisch;Sabine Pankuweit;Georg Ertl;Stefan Störk;Christiane E. Angermann - 通讯作者:
Christiane E. Angermann
Susanne Brenner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Susanne Brenner', 18)}}的其他基金
Finite Element Methods for Elliptic Least-Squares Problems with Inequality Constraints
具有不等式约束的椭圆最小二乘问题的有限元方法
- 批准号:
2208404 - 财政年份:2022
- 资助金额:
$ 24.48万 - 项目类别:
Standard Grant
Novel Finite Element Methods for Elliptic Distributed Optimal Control Problems
椭圆分布最优控制问题的新颖有限元方法
- 批准号:
1913035 - 财政年份:2019
- 资助金额:
$ 24.48万 - 项目类别:
Standard Grant
US Participation at the Twenty-fifth International Domain Decomposition Conference
美国参加第二十五届国际域名分解会议
- 批准号:
1759877 - 财政年份:2018
- 资助金额:
$ 24.48万 - 项目类别:
Standard Grant
Higher Order Variational Inequalities: Novel Finite Element Methods and Fast Solvers
高阶变分不等式:新颖的有限元方法和快速求解器
- 批准号:
1620273 - 财政年份:2016
- 资助金额:
$ 24.48万 - 项目类别:
Continuing Grant
Novel Nonconforming Finite Element Methods for Maxwell's Equations
麦克斯韦方程组的新颖非协调有限元方法
- 批准号:
0713835 - 财政年份:2007
- 资助金额:
$ 24.48万 - 项目类别:
Standard Grant
Theory and Applications of Multigrid and Domain Decomposition Methods
多重网格和域分解方法的理论与应用
- 批准号:
0074246 - 财政年份:2000
- 资助金额:
$ 24.48万 - 项目类别:
Standard Grant
Theory and Applications of Multigrid and Domain Decomposition Methods in Computational Mechanics
计算力学中多重网格和域分解方法的理论与应用
- 批准号:
9600133 - 财政年份:1996
- 资助金额:
$ 24.48万 - 项目类别:
Standard Grant
相似国自然基金
毛竹MLE(mariner-like element)转座酶催化机理研究
- 批准号:LZ19C160001
- 批准年份:2018
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Continuous finite element methods for under resolved turbulence in compressible flow
可压缩流中未解析湍流的连续有限元方法
- 批准号:
EP/X042650/1 - 财政年份:2024
- 资助金额:
$ 24.48万 - 项目类别:
Research Grant
Novel Finite Element Methods for Nonlinear Eigenvalue Problems - A Holomorphic Operator-Valued Function Approach
非线性特征值问题的新颖有限元方法 - 全纯算子值函数方法
- 批准号:
2109949 - 财政年份:2023
- 资助金额:
$ 24.48万 - 项目类别:
Standard Grant
Structure-Preserving Finite Element Methods for Incompressible Flow on Smooth Domains and Surfaces
光滑域和表面上不可压缩流动的保结构有限元方法
- 批准号:
2309425 - 财政年份:2023
- 资助金额:
$ 24.48万 - 项目类别:
Standard Grant
Developments and Applications of Numerical Verification Methods for Finite Element Approximation of Differential Equations
微分方程有限元逼近数值验证方法的发展与应用
- 批准号:
23K03232 - 财政年份:2023
- 资助金额:
$ 24.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Finite element methods for Boltzmann neutron transport equation on polygonal and polyhedral meshes
多边形和多面体网格上玻尔兹曼中子输运方程的有限元方法
- 批准号:
2887026 - 财政年份:2023
- 资助金额:
$ 24.48万 - 项目类别:
Studentship
Analysis and Novel Finite Element Methods for Elliptic Equations with Complex Boundary Conditions
复杂边界条件椭圆方程的分析和新颖的有限元方法
- 批准号:
2208321 - 财政年份:2022
- 资助金额:
$ 24.48万 - 项目类别:
Standard Grant
Structure-Preserving Hybrid Finite Element Methods
保结构混合有限元方法
- 批准号:
2208551 - 财政年份:2022
- 资助金额:
$ 24.48万 - 项目类别:
Standard Grant
Collaborative Research: Physics-Preserving Adaptive Finite Element Methods for Thermo-Poroelasticity
合作研究:热多孔弹性的物理保持自适应有限元方法
- 批准号:
2208402 - 财政年份:2022
- 资助金额:
$ 24.48万 - 项目类别:
Standard Grant
Collaborative Research: Physics-Preserving Adaptive Finite Element Methods for Thermo-Poroelasticity
合作研究:热多孔弹性的物理保持自适应有限元方法
- 批准号:
2208426 - 财政年份:2022
- 资助金额:
$ 24.48万 - 项目类别:
Standard Grant
Dual Finite Element Methods for Challenging Computations
用于挑战性计算的对偶有限元方法
- 批准号:
2208289 - 财政年份:2022
- 资助金额:
$ 24.48万 - 项目类别:
Standard Grant