Finite Element Methods for Higher Order Variational Inequalities

高阶变分不等式的有限元方法

基本信息

  • 批准号:
    1319172
  • 负责人:
  • 金额:
    $ 24.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-07-15 至 2017-06-30
  • 项目状态:
    已结题

项目摘要

Elliptic variational inequalities are fundamental mathematical tools for modeling phenomena that involve elliptic partial differential operators and constrained optimization. This project will develop and analyze finite element methods for fourth and higher order elliptic variational inequalities, which arise naturally for example in mechanics and elliptic optimal control problems. A recent theoretical advance by the PIs demonstrates that, for the displacement obstacle problems of Kirchhoff plates, the heart of the error analysis involves only problems at the continuous level and therefore any finite element method that works for fourth order boundary value problems can also be adapted for obstacle problems. This new approach will be extended to other fourth and higher order variational inequalities with different types of constraints, which will bring well-developed finite element methodologies for boundary value problems (conforming and nonconforming methods, discontinuous Galerkin methods, generalized finite element methods, isoparametric finite element methods, local mesh refinement, singular function method, etc.) into the study of numerical solution of higher order variational inequalities. Fast solvers for higher order variational inequalities, such as multigrid methods, domain decomposition methods and adaptive methods, will also be developed. In particular this project will lead to new algorithms for second order elliptic distributed optimal control problems with pointwise state and/or control constraints that are fundamentally different from existing algorithms. The results from this project will provide new insights to the numerical solution of higher order variational inequalities, an area that is becoming increasingly important as more and more complex phenomena in science, engineering and finance are being modeled by higher order differential equations. The outcomes of this project will impact diverse areas that require reliable and efficient numerical algorithms for the solution of such inequalities.
椭圆形的变分不平等是用于建模现象的基本数学工具,涉及椭圆形偏差算子和约束优化的现象。该项目将开发和分析针对第四和高阶椭圆形不平等现象的有限元方法,例如在力学和椭圆形最佳控制问题中自然出现。 PI的最新理论进步表明,对于Kirchhoff板的位移障碍物问题,错误分析的核心仅涉及在连续级别上的问题,因此,对于第四阶边界价值问题有效的任何有限元方法也可以适应障碍问题。 This new approach will be extended to other fourth and higher order variational inequalities with different types of constraints, which will bring well-developed finite element methodologies for boundary value problems (conforming and nonconforming methods, discontinuous Galerkin methods, generalized finite element methods, isoparametric finite element methods, local mesh refinement, singular function method, etc.) into the study of numerical solution of higher order variational不平等。还将开发出高阶变量不平等的快速求解器,例如多机方法,域分解方法和自适应方法。 特别是,该项目将导致二阶分布式分布式最佳控制问题的新算法,其最佳状态和/或控制约束与现有算法根本不同。 该项目的结果将为高阶变异不平等的数值解决方案提供新的见解,这一领域越来越重要,因为科学,工程和金融中越来越复杂的现象正在以高阶微分方程为模型。该项目的结果将影响需要可靠,有效的数值算法来解决此类不平等现象的不同领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Susanne Brenner其他文献

HEART FAILURE MEDICATION IN THE EXTENDED RANDOMIZED INH STUDY: CLINICAL OUTCOMES ACCORDING TO PRESCRIPTION FREQUENCY AND DOSING OF GUIDELINE-RECOMMENDED DRUGS
  • DOI:
    10.1016/s0735-1097(13)60764-0
  • 发表时间:
    2013-03-12
  • 期刊:
  • 影响因子:
  • 作者:
    Guelmisal Gueder;Stefan Stoerk;Goetz Gelbrich;Susanne Brenner;Caroline Morbach;Dominik Berliner;Ertl Georg;Christiane E. Angermann
  • 通讯作者:
    Christiane E. Angermann
OBSTRUCTIVE VENTILATORY DISORDER IN HEART FAILURE: NOT ALWAYS COPD!
  • DOI:
    10.1016/s0735-1097(10)61263-6
  • 发表时间:
    2010-03-09
  • 期刊:
  • 影响因子:
  • 作者:
    Susanne Brenner;Gülmisal Güder;Kilian Frö;hlich;Gö;tz Gelbrich;Roland Jahns;Berthold Jany;Georg Ertl;Christiane E. Angermann;Stefan Stö;rk
  • 通讯作者:
    Stefan Stö;rk
PREVALENCE AND PROGNOSTIC IMPACT OF ANEMIA AND RENAL INSUFFICIENCY: RELATION TO HEART FAILURE SEVERITY
  • DOI:
    10.1016/s0735-1097(11)60374-4
  • 发表时间:
    2011-04-05
  • 期刊:
  • 影响因子:
  • 作者:
    Gulmisal Guder;Goetz Gelbrich;Susanne Brenner;Burkert Pieske;Rolf Wachter;Frank Edelmann;Bernhard Maisch;Sabine Pankuweit;Georg Ertl;Stefan Störk;Christiane E. Angermann
  • 通讯作者:
    Christiane E. Angermann

Susanne Brenner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Susanne Brenner', 18)}}的其他基金

Finite Element Methods for Elliptic Least-Squares Problems with Inequality Constraints
具有不等式约束的椭圆最小二乘问题的有限元方法
  • 批准号:
    2208404
  • 财政年份:
    2022
  • 资助金额:
    $ 24.48万
  • 项目类别:
    Standard Grant
Novel Finite Element Methods for Elliptic Distributed Optimal Control Problems
椭圆分布最优控制问题的新颖有限元方法
  • 批准号:
    1913035
  • 财政年份:
    2019
  • 资助金额:
    $ 24.48万
  • 项目类别:
    Standard Grant
US Participation at the Twenty-fifth International Domain Decomposition Conference
美国参加第二十五届国际域名分解会议
  • 批准号:
    1759877
  • 财政年份:
    2018
  • 资助金额:
    $ 24.48万
  • 项目类别:
    Standard Grant
Higher Order Variational Inequalities: Novel Finite Element Methods and Fast Solvers
高阶变分不等式:新颖的有限元方法和快速求解器
  • 批准号:
    1620273
  • 财政年份:
    2016
  • 资助金额:
    $ 24.48万
  • 项目类别:
    Continuing Grant
Fast Interior Penalty Methods
快速内部惩罚方法
  • 批准号:
    1016332
  • 财政年份:
    2010
  • 资助金额:
    $ 24.48万
  • 项目类别:
    Standard Grant
Novel Nonconforming Finite Element Methods for Maxwell's Equations
麦克斯韦方程组的新颖非协调有限元方法
  • 批准号:
    0713835
  • 财政年份:
    2007
  • 资助金额:
    $ 24.48万
  • 项目类别:
    Standard Grant
Theory and Applications of Multigrid
多重网格理论与应用
  • 批准号:
    0738028
  • 财政年份:
    2007
  • 资助金额:
    $ 24.48万
  • 项目类别:
    Standard Grant
Theory and Applications of Multigrid
多重网格理论与应用
  • 批准号:
    0311790
  • 财政年份:
    2003
  • 资助金额:
    $ 24.48万
  • 项目类别:
    Standard Grant
Theory and Applications of Multigrid and Domain Decomposition Methods
多重网格和域分解方法的理论与应用
  • 批准号:
    0074246
  • 财政年份:
    2000
  • 资助金额:
    $ 24.48万
  • 项目类别:
    Standard Grant
Theory and Applications of Multigrid and Domain Decomposition Methods in Computational Mechanics
计算力学中多重网格和域分解方法的理论与应用
  • 批准号:
    9600133
  • 财政年份:
    1996
  • 资助金额:
    $ 24.48万
  • 项目类别:
    Standard Grant

相似国自然基金

元素标记单颗粒等离子体质谱数字检测新方法及其生物分析应用
  • 批准号:
    22374111
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
研究重元素体系三电离和三电子亲合能的Fock空间耦合簇计算方法和程序
  • 批准号:
    22373070
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于分层代码元素图的低质量代码注释智能诊疗方法研究
  • 批准号:
    62302430
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于飞秒激光诱导击穿光谱的液态熔盐堆钍铀循环中关键元素的原位在线检测方法的研究
  • 批准号:
    12365021
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
含零元素局部区域的弱光照图像复原方法研究
  • 批准号:
    62272240
  • 批准年份:
    2022
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目

相似海外基金

Continuous finite element methods for under resolved turbulence in compressible flow
可压缩流中未解析湍流的连续有限元方法
  • 批准号:
    EP/X042650/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.48万
  • 项目类别:
    Research Grant
Novel Finite Element Methods for Nonlinear Eigenvalue Problems - A Holomorphic Operator-Valued Function Approach
非线性特征值问题的新颖有限元方法 - 全纯算子值函数方法
  • 批准号:
    2109949
  • 财政年份:
    2023
  • 资助金额:
    $ 24.48万
  • 项目类别:
    Standard Grant
Development of a Piezoelectric Intramedullary Nail for Enhanced Fracture Healing
开发用于增强骨折愈合的压电髓内钉
  • 批准号:
    10759862
  • 财政年份:
    2023
  • 资助金额:
    $ 24.48万
  • 项目类别:
Structure-Preserving Finite Element Methods for Incompressible Flow on Smooth Domains and Surfaces
光滑域和表面上不可压缩流动的保结构有限元方法
  • 批准号:
    2309425
  • 财政年份:
    2023
  • 资助金额:
    $ 24.48万
  • 项目类别:
    Standard Grant
Toward Patient-Specific Computational Modeling of Tricuspid Valve Repair in Hypoplastic Left Heart Syndrome
左心发育不全综合征三尖瓣修复的患者特异性计算模型
  • 批准号:
    10643122
  • 财政年份:
    2023
  • 资助金额:
    $ 24.48万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了