Higher Order Variational Inequalities: Novel Finite Element Methods and Fast Solvers
高阶变分不等式:新颖的有限元方法和快速求解器
基本信息
- 批准号:1620273
- 负责人:
- 金额:$ 35.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Variational inequalities appear in areas that involve differential equations and optimization. They are fundamental tools for the modeling of phenomena in science, engineering and finance that involve inequality constraints. The goal of this project is to design, analyze and implement reliable and efficient numerical algorithms for variational inequalities that involve higher order differential equations, with applications to optimal control and materials science.Novel finite element methods for higher order elliptic and parabolic variational inequalities will be developed together with fast solution techniques (adaptive, parallel and multilevel) for the resulting discrete problems. The emphasis is for problems on nonsmooth and nonconvex domains where the regularity of the solutions of the variational inequalities is much more subtle, and for problems on three dimensional domains where numerical computations are much more demanding. An important application is to optimal control problems constrained by elliptic partial differential equations. By reformulating these optimal control problems as fourth order variational inequalities for the state variable, various finite element methodologies(classical conforming and nonconforming finite element methods, discontinuous Galerkin methods, partition of unity methods, mixed finite element methods, etc.) and techniques (error estimators, local mesh refinements, inclusion of singularities in local approximation spaces, etc.) can be employed in their numerical solutions. The new numerical methods designed from this approach will be fundamentally different from the ones obtained by the traditional approach where the emphasis is on the control variable.
变分不等式出现在涉及微分方程和优化的领域。 它们是对涉及不平等约束的科学、工程和金融现象建模的基本工具。 本项目的目标是设计,分析和实现可靠和有效的数值算法的变分不等式,涉及高阶微分方程,应用于最优控制和材料科学。新的有限元方法的高阶椭圆和抛物型变分不等式将开发与快速解决技术(自适应,并行和多级)的离散问题。重点是非光滑和非凸域的问题,其中的变分不等式的解决方案的规律性是更加微妙的,并为三维域的问题,数值计算是更苛刻的。 一个重要的应用是椭圆型偏微分方程约束的最优控制问题。通过将这些最优控制问题转化为状态变量的四阶变分不等式,各种有限元方法(经典协调有限元法、非协调有限元法、间断Galerkin方法、单位分解法、混合有限元法等)都得到了发展。和技术(误差估计,局部网格细化,包括奇异性的局部近似空间等)。可用于其数值解。 从这种方法设计的新的数值方法将从根本上不同于传统的方法,其中重点是控制变量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Susanne Brenner其他文献
Computer-assisted medical history taking prior to patient consultation in the outpatient care setting: a prospective pilot project
- DOI:
10.1186/s12913-024-12043-3 - 发表时间:
2024-12-18 - 期刊:
- 影响因子:3.000
- 作者:
Roman Hauber;Maximilian Schirm;Mirco Lukas;Clemens Reitelbach;Jonas Brenig;Margret Breunig;Susanne Brenner;Stefan Störk;Frank Puppe - 通讯作者:
Frank Puppe
HEART FAILURE MEDICATION IN THE EXTENDED RANDOMIZED INH STUDY: CLINICAL OUTCOMES ACCORDING TO PRESCRIPTION FREQUENCY AND DOSING OF GUIDELINE-RECOMMENDED DRUGS
- DOI:
10.1016/s0735-1097(13)60764-0 - 发表时间:
2013-03-12 - 期刊:
- 影响因子:
- 作者:
Guelmisal Gueder;Stefan Stoerk;Goetz Gelbrich;Susanne Brenner;Caroline Morbach;Dominik Berliner;Ertl Georg;Christiane E. Angermann - 通讯作者:
Christiane E. Angermann
OBSTRUCTIVE VENTILATORY DISORDER IN HEART FAILURE: NOT ALWAYS COPD!
- DOI:
10.1016/s0735-1097(10)61263-6 - 发表时间:
2010-03-09 - 期刊:
- 影响因子:
- 作者:
Susanne Brenner;Gülmisal Güder;Kilian Frö;hlich;Gö;tz Gelbrich;Roland Jahns;Berthold Jany;Georg Ertl;Christiane E. Angermann;Stefan Stö;rk - 通讯作者:
Stefan Stö;rk
PREVALENCE AND PROGNOSTIC IMPACT OF ANEMIA AND RENAL INSUFFICIENCY: RELATION TO HEART FAILURE SEVERITY
- DOI:
10.1016/s0735-1097(11)60374-4 - 发表时间:
2011-04-05 - 期刊:
- 影响因子:
- 作者:
Gulmisal Guder;Goetz Gelbrich;Susanne Brenner;Burkert Pieske;Rolf Wachter;Frank Edelmann;Bernhard Maisch;Sabine Pankuweit;Georg Ertl;Stefan Störk;Christiane E. Angermann - 通讯作者:
Christiane E. Angermann
Susanne Brenner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Susanne Brenner', 18)}}的其他基金
Finite Element Methods for Elliptic Least-Squares Problems with Inequality Constraints
具有不等式约束的椭圆最小二乘问题的有限元方法
- 批准号:
2208404 - 财政年份:2022
- 资助金额:
$ 35.68万 - 项目类别:
Standard Grant
Novel Finite Element Methods for Elliptic Distributed Optimal Control Problems
椭圆分布最优控制问题的新颖有限元方法
- 批准号:
1913035 - 财政年份:2019
- 资助金额:
$ 35.68万 - 项目类别:
Standard Grant
US Participation at the Twenty-fifth International Domain Decomposition Conference
美国参加第二十五届国际域名分解会议
- 批准号:
1759877 - 财政年份:2018
- 资助金额:
$ 35.68万 - 项目类别:
Standard Grant
Finite Element Methods for Higher Order Variational Inequalities
高阶变分不等式的有限元方法
- 批准号:
1319172 - 财政年份:2013
- 资助金额:
$ 35.68万 - 项目类别:
Standard Grant
Novel Nonconforming Finite Element Methods for Maxwell's Equations
麦克斯韦方程组的新颖非协调有限元方法
- 批准号:
0713835 - 财政年份:2007
- 资助金额:
$ 35.68万 - 项目类别:
Standard Grant
Theory and Applications of Multigrid and Domain Decomposition Methods
多重网格和域分解方法的理论与应用
- 批准号:
0074246 - 财政年份:2000
- 资助金额:
$ 35.68万 - 项目类别:
Standard Grant
Theory and Applications of Multigrid and Domain Decomposition Methods in Computational Mechanics
计算力学中多重网格和域分解方法的理论与应用
- 批准号:
9600133 - 财政年份:1996
- 资助金额:
$ 35.68万 - 项目类别:
Standard Grant
相似国自然基金
基于Order的SIS/LWE变体问题及其应用
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
Poisson Order, Morita 理论,群作用及相关课题
- 批准号:19ZR1434600
- 批准年份:2019
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Collaborative Research: Data-Driven Variational Multiscale Reduced Order Models for Biomedical and Engineering Applications
协作研究:用于生物医学和工程应用的数据驱动的变分多尺度降阶模型
- 批准号:
2345048 - 财政年份:2023
- 资助金额:
$ 35.68万 - 项目类别:
Standard Grant
Second-Order Variational Properties of Composite Optimization and Applications
复合材料优化的二阶变分性质及其应用
- 批准号:
2108546 - 财政年份:2021
- 资助金额:
$ 35.68万 - 项目类别:
Standard Grant
Collaborative Research: Data-Driven Variational Multiscale Reduced Order Models for Biomedical and Engineering Applications
协作研究:用于生物医学和工程应用的数据驱动的变分多尺度降阶模型
- 批准号:
2012253 - 财政年份:2020
- 资助金额:
$ 35.68万 - 项目类别:
Standard Grant
A new refinement allowing infinite-order degeneration and explosion of weighted classical inequalities and its application to variational problems
允许加权经典不等式的无限阶退化和爆炸的新改进及其在变分问题中的应用
- 批准号:
20K03670 - 财政年份:2020
- 资助金额:
$ 35.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Data-Driven Variational Multiscale Reduced Order Models for Biomedical and Engineering Applications
协作研究:用于生物医学和工程应用的数据驱动的变分多尺度降阶模型
- 批准号:
2012686 - 财政年份:2020
- 资助金额:
$ 35.68万 - 项目类别:
Standard Grant
Study of properties of solutions to geometric higher order variational problems
几何高阶变分问题解的性质研究
- 批准号:
20K14341 - 财政年份:2020
- 资助金额:
$ 35.68万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Data-Driven Variational Multiscale Reduced Order Models for Biomedical and Engineering Applications
协作研究:用于生物医学和工程应用的数据驱动的变分多尺度降阶模型
- 批准号:
2012255 - 财政年份:2020
- 资助金额:
$ 35.68万 - 项目类别:
Standard Grant
Collaborative Research: Second-Order Variational Analysis in Structured Optimization and Algorithms with Applications
合作研究:结构化优化中的二阶变分分析及算法及其应用
- 批准号:
1816386 - 财政年份:2018
- 资助金额:
$ 35.68万 - 项目类别:
Standard Grant
Advanced Research on Second-Order Variational Analysis with New Applications to Optimization, Control, and Practical Modeling
二阶变分分析的高级研究及其在优化、控制和实际建模中的新应用
- 批准号:
1808978 - 财政年份:2018
- 资助金额:
$ 35.68万 - 项目类别:
Standard Grant
Collaborative Research: Second-Order Variational Analysis in Structured Optimization and Algorithms with Applications
合作研究:结构化优化中的二阶变分分析及算法及其应用
- 批准号:
1816449 - 财政年份:2018
- 资助金额:
$ 35.68万 - 项目类别:
Standard Grant