ITR: Representation and Learning in Computational Game Theory

ITR:计算博弈论中的表示和学习

基本信息

  • 批准号:
    0325363
  • 负责人:
  • 金额:
    $ 39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-09-15 至 2009-07-31
  • 项目状态:
    已结题

项目摘要

Computational Game Theory is a rapidly emerging discipline at the intersection of computer science, economics, and related fields. It is becoming a fundamental tool for understanding and designing complex multiagent environments such as the Internet, systems of autonomous agents, and electronic economies. The objective of this program is the development of powerful new representations for complex game-theoretic and economic reasoning problems, and strategic learning algorithms for adjusting their parameters.Special emphasis is being given to models permitting the specification of natural network structure in the interactions within a large population of players, and models generalizing the spirit of financial markets, in which interactions take place via global intermediate quantities. Powerful recent machine learning methods such as boosting and exponential updates are also being applied to the more subtle and complex setting of learning in games.The expected results of the program are a rich set of new modeling methods for game-theoretic applications, and computationally efficient algorithms for reasoning with them, including the computation of Nash, correlated, and other equilibria, as well as efficient learning methods with known convergence properties. Special emphasis will be given to formal analysis, and the resulting methods will provide a new toolbox for researchers in economics, social science, evolutionary biology, and other fields in which game-theoretic approaches are common. The findings of the program will be widely disseminated through international conferences and journals, as well as more specialized workshops deliberately bringing together researchers from the different relevant disciplines.
计算博弈论是计算机科学、经济学和相关领域交叉的一门新兴学科。它正在成为理解和设计复杂的多主体环境,如互联网,自治代理系统和电子经济的基本工具。该计划的目标是为复杂的博弈论和经济推理问题开发强大的新表示法,以及调整其参数的战略学习算法。特别强调允许在大量参与者之间的相互作用中指定自然网络结构的模型,以及概括金融市场精神的模型,其中相互作用通过全局中间量发生。最近强大的机器学习方法,如boosting和指数更新,也被应用于更微妙和更复杂的游戏学习环境。该计划的预期结果是为游戏理论应用提供一套丰富的新建模方法,以及用于推理的计算高效算法,包括纳什均衡,相关均衡和其他均衡的计算,以及具有已知收敛特性的有效学习方法。特别强调将给予正式的分析,并由此产生的方法将提供一个新的工具箱,为研究人员在经济学,社会科学,进化生物学,以及其他领域的博弈论的方法是常见的。该方案的研究结果将通过国际会议和期刊以及专门汇集不同相关学科研究人员的更专业的讲习班广泛传播。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Manfred Warmuth其他文献

Minimax Fixed-Design Linear Regression
极小极大固定设计线性回归

Manfred Warmuth的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Manfred Warmuth', 18)}}的其他基金

BIGDATA: Collaborative Research: F: Nomadic Algorithms for Machine Learning in the Cloud
BIGDATA:协作研究:F:云中机器学习的游牧算法
  • 批准号:
    1546459
  • 财政年份:
    2016
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
RI: Small: Collaborative Research: On-Line Learning Algorithms for Path Experts with Non-Additive Losses
RI:小型:协作研究:具有非加性损失的路径专家的在线学习算法
  • 批准号:
    1619271
  • 财政年份:
    2016
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
The 2012 Machine Learning Summer School at UC Santa Cruz
2012 年加州大学圣克鲁斯分校机器学习暑期学校
  • 批准号:
    1239963
  • 财政年份:
    2012
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
III: Small: Collaborative Research: Probabilistic Models using Generalized Exponential Families
III:小:协作研究:使用广义指数族的概率模型
  • 批准号:
    1118028
  • 财政年份:
    2011
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
RI: Small: Kernelization with Outer Product Instances
RI:小:使用外部产品实例进行内核化
  • 批准号:
    0917397
  • 财政年份:
    2009
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Deriving and Analyzing Learning Algorithms
推导和分析学习算法
  • 批准号:
    9821087
  • 财政年份:
    1999
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
Amortized Analysis for On-Line Learning Algorithms
在线学习算法的摊销分析
  • 批准号:
    9700201
  • 财政年份:
    1997
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Optimal Transport Beyond Probability Measures for Robust Geometric Representation Learning
职业生涯:超越概率测量的最佳传输以实现稳健的几何表示学习
  • 批准号:
    2339898
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
AI4PEX: Artificial Intelligence and Machine Learning for Enhanced Representation of Processes and Extremes in Earth System Models
AI4PEX:人工智能和机器学习,用于增强地球系统模型中过程和极值的表示
  • 批准号:
    10103109
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    EU-Funded
Artificial Intelligence and Machine Learning for Enhanced Representation of Processes and Extremes in Earth System Models (AI4PEX)
人工智能和机器学习增强地球系统模型中过程和极值的表示(AI4PEX)
  • 批准号:
    10093450
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    EU-Funded
Sonar Foundational Model for Representation Learning and Automatic Target Recognition Systems in Underwater Maritime Environment
水下海洋环境中表示学习和自动目标识别系统的声纳基础模型
  • 批准号:
    2903803
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Studentship
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313151
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
CAREER: Ethnic-racial discrimination influences on neural representation of threat learning in Latina girls: A multivariate modeling approach
职业:民族种族歧视对拉丁裔女孩威胁学习的神经表征的影响:多元建模方法
  • 批准号:
    2239067
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
Representation Learning for Deep Anomaly Detection
用于深度异常检测的表示学习
  • 批准号:
    23K11222
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Trustworthy decentralized AI for large-scale IoT representation learning
用于大规模物联网表征学习的值得信赖的去中心化人工智能
  • 批准号:
    22KJ0878
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Spatial Calibration of Head-Mounted Displays Based on Implicit Function Representation of Light Fields Using Deep Learning
基于深度学习光场隐式函数表示的头戴式显示器空间校准
  • 批准号:
    23K16920
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unifying Pre-training and Multilingual Semantic Representation Learning for Low-resource Neural Machine Translation
统一预训练和多语言语义表示学习以实现低资源神经机器翻译
  • 批准号:
    22KJ1843
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了