III: Small: Collaborative Research: Probabilistic Models using Generalized Exponential Families

III:小:协作研究:使用广义指数族的概率模型

基本信息

  • 批准号:
    1118028
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-07-01 至 2016-07-31
  • 项目状态:
    已结题

项目摘要

III: Small: Collaborative Research: Probabilistic Models using Generalized Exponential FamiliesSwaminathan Vishwanathan, Purdue University; Manfred Warmuth, University of California, Santa CruzMachine learning is currently indispensible for building predictive models from massive data sets. A large majority of widely used machine learning algorithms are based on minimizing a convex loss function. A fundamental problem with all such models is that they are not robust to outliers. To address this limitation, this project develops probabilistic models based on a parametric family of distributions, namely, the t-exponential family, that lead to quasi-convex loss functions and yield models that are robust to outliers. The key challenge when working with the t-exponential family of distributions, as in the case of the exponential family, is to compute the log-partition function and perform inference efficiently. The project addresses this challenge in two specific cases. For problems with small number of classes exact iterative schemes are being developed. For problems where the number of classes is exponentially large, approximate inference techniques are being developed by extending variational methods. In partnership with Google, some of the data mining algorithms resulting from this project are being applied to a challenging real-world problem of recognizing text in photos (the PhotoOCR problem). The project offers opportunities for research-based advanced training of graduate students as well as research opportuinities for undergraduates in machine learning and data mining. Algorithms for constructing predictive models from data that are robust in the presence of outliers are likely to find use in a broad range of applications. Open source implementions of algorithms, publications, and data sets resulting from the project are being made available through the project web page at: http://learning.stat.purdue.edu/wiki/tentropy/start
第三章:小:合作研究:Swaminathan Vishwanathan,Purdue University; Manfred Wardman,University of加州,Santa Cruz机器学习目前对于从海量数据集构建预测模型是不可或缺的。大多数广泛使用的机器学习算法都是基于最小化凸损失函数。所有这些模型的一个根本问题是,它们对离群值不鲁棒。为了解决这一限制,该项目开发了基于参数分布族(即t指数族)的概率模型,该模型导致准凸损失函数和对离群值具有鲁棒性的产量模型。在处理t-指数分布族时,与指数分布族的情况一样,关键的挑战是计算对数配分函数并有效地执行推理。该项目在两个具体案例中应对这一挑战。 对于少数类的问题,精确的迭代方案正在开发中。对于类的数量是指数大的问题,近似推理技术正在开发扩展变分方法。通过与Google的合作,该项目产生的一些数据挖掘算法正在应用于识别照片中的文本(PhotoOCR问题)的挑战性现实问题。该项目为研究生提供了以研究为基础的高级培训机会,也为本科生提供了机器学习和数据挖掘的研究机会。用于从在存在离群值的情况下稳健的数据构建预测模型的算法可能在广泛的应用中找到用途。该项目产生的算法、出版物和数据集的开源实现可通过项目网页获得:http://learning.stat.purdue.edu/wiki/tentropy/start

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Manfred Warmuth其他文献

Minimax Fixed-Design Linear Regression
极小极大固定设计线性回归

Manfred Warmuth的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Manfred Warmuth', 18)}}的其他基金

BIGDATA: Collaborative Research: F: Nomadic Algorithms for Machine Learning in the Cloud
BIGDATA:协作研究:F:云中机器学习的游牧算法
  • 批准号:
    1546459
  • 财政年份:
    2016
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
RI: Small: Collaborative Research: On-Line Learning Algorithms for Path Experts with Non-Additive Losses
RI:小型:协作研究:具有非加性损失的路径专家的在线学习算法
  • 批准号:
    1619271
  • 财政年份:
    2016
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
The 2012 Machine Learning Summer School at UC Santa Cruz
2012 年加州大学圣克鲁斯分校机器学习暑期学校
  • 批准号:
    1239963
  • 财政年份:
    2012
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
RI: Small: Kernelization with Outer Product Instances
RI:小:使用外部产品实例进行内核化
  • 批准号:
    0917397
  • 财政年份:
    2009
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
ITR: Representation and Learning in Computational Game Theory
ITR:计算博弈论中的表示和学习
  • 批准号:
    0325363
  • 财政年份:
    2003
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Deriving and Analyzing Learning Algorithms
推导和分析学习算法
  • 批准号:
    9821087
  • 财政年份:
    1999
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Amortized Analysis for On-Line Learning Algorithms
在线学习算法的摊销分析
  • 批准号:
    9700201
  • 财政年份:
    1997
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant

相似国自然基金

昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
  • 批准号:
    32000033
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
  • 批准号:
    31972324
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
  • 批准号:
    81900988
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
  • 批准号:
    31802058
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
  • 批准号:
    31870821
  • 批准年份:
    2018
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
  • 批准号:
    31772128
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
  • 批准号:
    81704176
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
  • 批准号:
    91640114
  • 批准年份:
    2016
  • 资助金额:
    85.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
  • 批准号:
    2322973
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
  • 批准号:
    2322974
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
  • 批准号:
    2336769
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
  • 批准号:
    2336768
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
III: Small: Multiple Device Collaborative Learning in Real Heterogeneous and Dynamic Environments
III:小:真实异构动态环境中的多设备协作学习
  • 批准号:
    2311990
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: Reconstruction of Diffusion History in Cyber and Human Networks with Applications in Epidemiology and Cybersecurity
合作研究:III:小:重建网络和人类网络中的扩散历史及其在流行病学和网络安全中的应用
  • 批准号:
    2324770
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: Physics Guided Graph Networks for Modeling Water Dynamics in Freshwater Ecosystems
合作研究:III:小型:用于模拟淡水生态系统中水动力学的物理引导图网络
  • 批准号:
    2316306
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
  • 批准号:
    2311596
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
  • 批准号:
    2311598
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: Reconstruction of Diffusion History in Cyber and Human Networks with Applications in Epidemiology and Cybersecurity
合作研究:III:小:重建网络和人类网络中的扩散历史及其在流行病学和网络安全中的应用
  • 批准号:
    2324769
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了