QuIC – TAQS: Interconnected superconducting and color center qubits in silicon devices
QuIC → TAQS:硅器件中互连的超导和色心量子位
基本信息
- 批准号:2137645
- 负责人:
- 金额:$ 246.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Quantum technologies, similar to their classical counterparts, will be built by combining modules containing quantum processors, memory units, and optical links for long-distance communication. When networked over long distances, these modules will enable applications including long-distance secure communication, distributed quantum computing, and secure access to cloud quantum computers in a way that guarantees complete privacy to the user. A critical missing ingredient for the realization of such a ‘quantum internet’ is units that can convert quantum information between such modules. This project develops interconnects between leading solid-state quantum computing and memory platforms based on superconducting circuits and atom-like defects in solids. It advances microfabricated electrical, acoustic, and optical devices to enable quantum state conversion between superconducting quantum processors and single-atom memories in silicon. By using microfabricated silicon devices, this approach could lead to the adoption of advanced semiconductor manufacturing techniques in quantum technologies and interconnects. In addition to the research, the PIs are training students and increasing participation in the emerging field of quantum engineering by developing new K-12 outreach modules on quantum networks, supporting undergraduate research positions, and establishing new graduate courses. This project develops building blocks for a quantum network architecture combining superconducting quantum processor end nodes and color-center quantum repeater nodes operating at higher temperatures. Superconducting circuits, while frontrunners as quantum processors, lack an optical interface and have to operate at ultralow temperatures. This makes them a scarce resource in a large-scale quantum network. This project develops modular microwave-to-optical quantum transducers to interconnect superconducting circuits with optical photons and color center qubits in silicon. It integrates recently discovered color center qubits in silicon into silicon photonic devices to develop practical repeater nodes that can operate at higher temperatures. The microwave-to-optical quantum transducers and the quantum emitters are both developed on an integrated electro-opto-mechanical device platform based on silicon-on-insulator. The PIs are using this integrated device platform to investigate on-chip and off-chip methods of entanglement generation between superconducting qubits and color center qubits via indistinguishable photon detection and coherent single phonon exchange, and optimizing protocols for such a heterogeneous quantum network. This approach builds on silicon devices, the ideal material platform for fabricating electronic and photonic devices at scale, to interconnect leading solid-state qubit platforms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子技术,类似于它们的经典对应技术,将通过组合包含量子处理器、存储单元和用于远距离通信的光链路的模块来构建。当远距离联网时,这些模块将使包括远程安全通信、分布式量子计算和安全访问云量子计算机在内的应用能够以确保用户完全隐私的方式实现。要实现这种“量子互联网”,一个关键的缺失因素是能够在这类模块之间转换量子信息的单元。该项目基于超导电路和固体中的原子状缺陷,开发了领先的固态量子计算和存储平台之间的互连。它推动了微制造的电气、声学和光学器件的发展,使超导量子处理器和硅中的单原子存储器之间能够进行量子态转换。通过使用微细加工的硅器件,这种方法可能导致在量子技术和互连方面采用先进的半导体制造技术。除了研究,私人投资机构还通过开发新的量子网络K-12扩展模块、支持本科生研究职位和建立新的研究生课程,培训学生并增加对新兴量子工程领域的参与。该项目为结合超导量子处理器终端节点和在较高温度下运行的色心量子中继器节点的量子网络架构开发构建块。超导电路虽然是量子处理器的领跑者,但缺乏光学接口,必须在超低温下工作。这使得它们成为大规模量子网络中的稀缺资源。该项目开发了模块化的微波-光量子换能器,将超导电路与硅中的光学光子和色心量子比特互连。它将最近发现的硅中的色心量子比特集成到硅光子器件中,以开发可以在更高温度下运行的实用中继器节点。微波-光学量子换能器和量子发射器都是在基于绝缘体上硅的集成电光机械器件平台上开发的。PI正在利用这个集成设备平台来研究通过不可区分的光子检测和相干单声子交换在超导量子比特和色心量子比特之间产生纠缠的片上和片外方法,并为这样一个异质量子网络优化协议。这种方法建立在硅器件的基础上,硅器件是大规模制造电子和光子器件的理想材料平台,可以互连领先的固态量子比特平台。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Electro-optic transduction in silicon via gigahertz-frequency nanomechanics
通过千兆赫频率纳米力学在硅中进行电光转换
- DOI:10.1364/optica.479162
- 发表时间:2023
- 期刊:
- 影响因子:10.4
- 作者:Zhao, Han;Bozkurt, Alkim;Mirhosseini, Mohammad
- 通讯作者:Mirhosseini, Mohammad
Exploration of Defect Dynamics and Color Center Qubit Synthesis with Pulsed Ion Beams
脉冲离子束缺陷动力学和色心量子位合成的探索
- DOI:10.3390/qubs6010013
- 发表时间:2022
- 期刊:
- 影响因子:1.4
- 作者:Schenkel, Thomas;Redjem, Walid;Persaud, Arun;Liu, Wei;Seidl, Peter A.;Amsellem, Ariel J.;Kanté, Boubacar;Ji, Qing
- 通讯作者:Ji, Qing
Deep sub-wavelength localization of light and sound in dielectric resonators
- DOI:10.1364/oe.455248
- 发表时间:2022-04-11
- 期刊:
- 影响因子:3.8
- 作者:Bozkurt, Alkim;Joshi, Chaitali;Mirhosseini, Mohammad
- 通讯作者:Mirhosseini, Mohammad
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alp Sipahigil其他文献
フェルミ推定による数学教員志望学生の仮設的思考に関する教授実験
利用费米估计对立志成为数学教师的学生进行假设思维的教学实验
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Lachlan J. Rogers;Kay D. Jahnke;Mathias H. Metsch;Alp Sipahigil;Jan M. Binder;Tokuyuki Teraji;Hitoshi Sumiya;Junichi Isoya;Mikhail D. Lukin;Philipp Hemmer;and Fedor Jelezko;平野裕之;小原 豊 - 通讯作者:
小原 豊
Non-Markovian dynamics of a superconducting qubit in a phononic bandgap
声子带隙中超导量子比特的非马尔可夫动力学
- DOI:
10.1038/s41567-024-02740-5 - 发表时间:
2025-01-07 - 期刊:
- 影响因子:18.400
- 作者:
Mutasem Odeh;Kadircan Godeneli;Eric Li;Rohin Tangirala;Haoxin Zhou;Xueyue Zhang;Zi-Huai Zhang;Alp Sipahigil - 通讯作者:
Alp Sipahigil
Alp Sipahigil的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
北半球历史生物地理学问题探讨:基于RAD taqs方法的紫荆属亲缘地理学研究
- 批准号:31470312
- 批准年份:2014
- 资助金额:85.0 万元
- 项目类别:面上项目
相似海外基金
QuSeC-TAQS: Nanodiamond Quantum Sensing for Four-Dimensional Live-Cell Imaging
QuSeC-TAQS:用于四维活细胞成像的纳米金刚石量子传感
- 批准号:
2326628 - 财政年份:2023
- 资助金额:
$ 246.35万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Sensing-Intelligence on The Move: Quantum-Enhanced Optical Diagnosis of Crop Diseases
QuSeC-TAQS:移动中的传感智能:农作物病害的量子增强光学诊断
- 批准号:
2326746 - 财政年份:2023
- 资助金额:
$ 246.35万 - 项目类别:
Standard Grant
QuSeC-TAQS: Development of Quantum Sensors with Helium-4 using 2D Materials
QuSeC-TAQS:使用 2D 材料开发 Helium-4 量子传感器
- 批准号:
2326801 - 财政年份:2023
- 资助金额:
$ 246.35万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
- 批准号:
2326840 - 财政年份:2023
- 资助金额:
$ 246.35万 - 项目类别:
Standard Grant
QuSeC-TAQS: Entanglement- Enhanced Multiphoton Fluorescence Imaging of in Vivo Neural Function
QuSeC-TAQS:体内神经功能的纠缠增强多光子荧光成像
- 批准号:
2326758 - 财政年份:2023
- 资助金额:
$ 246.35万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Novel Quantum Algorithms for Optical Atomic Clocks
QuSeC-TAQS:用于光学原子钟的新型量子算法
- 批准号:
2326810 - 财政年份:2023
- 资助金额:
$ 246.35万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Optically Hyperpolarized Quantum Sensors in Designer Molecular Assemblies
QuSeC-TAQS:设计分子组件中的光学超极化量子传感器
- 批准号:
2326838 - 财政年份:2023
- 资助金额:
$ 246.35万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Driving Advances in Magnetic Materials and Devices with Quantum Sensing of Magnons
QuSeC-TAQS:利用磁振子量子传感推动磁性材料和器件的进步
- 批准号:
2326528 - 财政年份:2023
- 资助金额:
$ 246.35万 - 项目类别:
Standard Grant
QuSeC-TAQS: Quantum Sensing Platform for Biomolecular Analytics
QuSeC-TAQS:用于生物分子分析的量子传感平台
- 批准号:
2326748 - 财政年份:2023
- 资助金额:
$ 246.35万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Nanoscale Covariance Magnetometry with Diamond Quantum Sensors
QuSeC-TAQS:采用金刚石量子传感器的纳米级协方差磁力测量
- 批准号:
2326767 - 财政年份:2023
- 资助金额:
$ 246.35万 - 项目类别:
Standard Grant














{{item.name}}会员




