Information Technology Research (ITR): Next-Generation Bio-Molecular Imaging and Information Discovery

信息技术研究 (ITR):下一代生物分子成像和信息发现

基本信息

项目摘要

This collaborative project brings together a strong multi-institutional interdisciplinary team of investigators to study and advance the current understanding of cellular and sub-cellular events. Continuing technological advances in fluorescence and atomic-force microscopy allow scientists to observe molecular function, distribution, and interrelationships in living cells. However, a full understanding of tens of thousands of proteins and the complex molecular processes they engage in requires a voluminous amount of image data, which currently must be analyzed by visual inspection. To facilitate such an analysis, researchers from the four participating institutions are focusing on three main research thrusts. First, next-generation intelligent imaging involves information processing at the sensor level to enable high-speed and super-resolution imaging. The goal is to enable biologists to study cellular processes at resolutions in time and space that are not possible with current technologies. The second research thrust is pattern recognition and data mining as applied to bio-molecular image collections. Salient features that characterize the underlying patterns in cells and tissues need to be computed for the vast volumes of images acquired through automated microscopy. Third, a distributed database of bio-molecular images is being created. The merging of pattern-recognition and data-mining tools with new, powerful methods for indexing, data modeling, and collaboration, is aimed at creating a unique infrastructure that greatly facilitates image bioinformatics, thus complementing recent revolutionary advances in genomics. The outcome of this research will lead to new and novel information-processing methods for bio-molecular image data. Efficient and effective representation of such data will enable researchers to search and browse through large collections of image and video data and look for similar patterns in such datasets, thus facilitating information discovery. During its five-year duration, this project will develop, test, and deploy a distributed database of bio-molecular image data accessible to researchers around the world. The impact of the distributed database will be through large-scale biology in which the results of a single experiment can be globally correlated with the results from other groups of scientists, thus accelerating discovery of dynamic relationships between structure and function in complex biological systems.The project will develop new courses, and will facilitate student exchanges, semi-annual meetings, and workshops, benefiting students at all levels. This project will train a new generation of biologists, computer scientists and engineers well versed in the imaging and information-processing sciences at the forefront of next-generation biotechnology. Partnership will be established with institutions with large populations of students from groups underrepresented in science and engineering, such as the California State Universities at Fresno and San Bernardino and the Universidad Metropolitan in Puerto Rico, for undergraduate recruitment and outreach. An effective mode of outreach for students is to educate their teachers, and the project will offer summer fellowships for elementary, high-school, college, and university teachers.
这个合作项目汇集了一支强大的多机构跨学科研究团队,以研究和促进对细胞和亚细胞事件的当前理解。荧光和原子力显微镜技术的不断进步使科学家能够观察活细胞中的分子功能、分布和相互关系。然而,要充分了解数以万计的蛋白质及其参与的复杂分子过程,需要大量的图像数据,目前这些数据必须通过肉眼检查进行分析。为了便于这样的分析,来自四个参与机构的研究人员将重点放在三个主要的研究推动力上。首先,下一代智能成像涉及传感器层面的信息处理,以实现高速和超分辨率成像。其目标是使生物学家能够在时间和空间的分辨率下研究细胞过程,这是目前的技术所不可能做到的。第二个研究重点是模式识别和数据挖掘在生物分子图像采集中的应用。需要为通过自动显微镜获取的海量图像计算表征细胞和组织中潜在模式的显著特征。第三,正在创建一个生物分子图像的分布式数据库。将模式识别和数据挖掘工具与新的、强大的索引、数据建模和协作方法相结合,旨在创建一个独特的基础设施,极大地促进图像生物信息学,从而补充基因组学最新的革命性进展。这一研究成果将为生物分子图像数据提供新的信息处理方法。这些数据的高效和有效表示将使研究人员能够搜索和浏览大量图像和视频数据,并在这些数据集中寻找类似的模式,从而促进信息发现。在五年的时间里,这个项目将开发、测试和部署一个分布式的生物分子图像数据数据库,全世界的研究人员都可以访问。分布式数据库的影响将通过大规模生物学,其中单个实验的结果可以与其他科学家小组的结果进行全球关联,从而加速发现复杂生物系统中结构和功能之间的动态关系。该项目将开发新的课程,并将促进学生交流、半年一次的会议和研讨会,使各级学生受益。该项目将在下一代生物技术的前沿培养精通成像和信息处理科学的新一代生物学家、计算机科学家和工程师。将与来自科学和工程专业人数较少群体的学生人数较多的机构建立伙伴关系,如弗雷斯诺和圣贝纳迪诺的加利福尼亚州立大学以及波多黎各的大都会大学,以进行本科生招聘和外联工作。学生外展的一种有效方式是教育他们的老师,该项目将为小学、高中、大学和大学教师提供暑期奖学金。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bangalore Manjunath其他文献

Bangalore Manjunath的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bangalore Manjunath', 18)}}的其他基金

SI2-SSI: LIMPID: Large-Scale IMage Processing Infrastructure Development
SI2-SSI:LIMPID:大规模图像处理基础设施开发
  • 批准号:
    1664172
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
EAGER: Collaborative 3D Materials Science Research in the Cloud
EAGER:云端协作 3D 材料科学研究
  • 批准号:
    1650972
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
ABI Development: BISQUE - Scalable Image Informatics for Quantitative Biology
ABI 开发:BISQUE - 用于定量生物学的可扩展图像信息学
  • 批准号:
    1356750
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CDI-Type-II: Computational Challenges in the Discovery and Understanding of Complex Boiological Structures through Multimodal Imaging
CDI-Type-II:通过多模态成像发现和理解复杂生物结构的计算挑战
  • 批准号:
    0941717
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
III-CXT-Large: Working with Uncertain Data in Exploring Scientific Images
III-CXT-Large:在探索科学图像时使用不确定数据
  • 批准号:
    0808772
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
IGERT: Graduate Training Program in Interactive Digital Multimedia
IGERT:交互式数字多媒体研究生培训计划
  • 批准号:
    0221713
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
An Image Thesaurus for Content Based Search Using Texture and Color
使用纹理和颜色进行基于内容搜索的图像同义词库
  • 批准号:
    9704785
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似国自然基金

Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
Journal of Computer Science and Technology
  • 批准号:
    61224001
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Journal of Materials Science & Technology
  • 批准号:
    51024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Computer Science and Technology
  • 批准号:
    61040017
  • 批准年份:
    2010
  • 资助金额:
    4.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Research Training in Women's Health and Intersectionality Using Data Science and Health Information Technology (WISDOM)
利用数据科学和健康信息技术 (WISDOM) 进行妇女健康和交叉性研究培训
  • 批准号:
    10628160
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Building capacity towards engaging older adults in research on health information technology to mitigate and prevent digital ageism
建设能力,让老年人参与健康信息技术研究,以减轻和预防数字年龄歧视
  • 批准号:
    497937
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Research on Information Accessibility and History of Science, Technology and Society Concerning the Concept of Universal Design in Japan
日本通用设计概念的信息可及性与科学、技术和社会史研究
  • 批准号:
    22K00281
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Information Technology and Communications Research Centre (ITCRC)
信息技术与通信研究中心 (ITCRC)
  • 批准号:
    513354-2017
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    College and Community Innovation Program
CISE-MSI: RCBP-ED: SaTC: Increasing Cybersecurity Research Capacity and Support Services for Underrepresented Computer Science and Information Technology Majors
CISE-MSI:RCBP-ED:SaTC:为代表性不足的计算机科学和信息技术专业提高网络安全研究能力和支持服务
  • 批准号:
    2219435
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
New technology to communicate biological information to artificial intelligence agents: development of digital homecage system for biomedical and pharmaceutical research
将生物信息传递给人工智能代理的新技术:用于生物医学和药物研究的数字家庭笼系统的开发
  • 批准号:
    560827-2020
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
Consumer Health Information Technology to Engage and Support ADRD Caregivers: Research Program to Address ADRD Implementation MIlestone 13.I
消费者健康信息技术吸引和支持 ADRD 护理人员:解决 ADRD 实施里程碑 13.I 的研究计划
  • 批准号:
    10450778
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
D-ISN: TRACK 2: Building a Multifaceted Research Team to Examine the Use of Information Technology in the Creation and Disruption of Domestic Sex Trafficking Supply Networks
D-ISN:轨道 2:建立多方面的研究团队,研究信息技术在创建和破坏家庭性贩运供应网络中的使用情况
  • 批准号:
    2039678
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Consumer Health Information Technology to Engage and Support ADRD Caregivers: Research Program to Address ADRD Implementation MIlestone 13.I
消费者健康信息技术吸引和支持 ADRD 护理人员:解决 ADRD 实施里程碑 13.I 的研究计划
  • 批准号:
    10207913
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Information Technology and Communications Research Centre (ITCRC)
信息技术与通信研究中心 (ITCRC)
  • 批准号:
    513354-2017
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    College and Community Innovation Program
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了