ABI Development: BISQUE - Scalable Image Informatics for Quantitative Biology

ABI 开发:BISQUE - 用于定量生物学的可扩展图像信息学

基本信息

项目摘要

The University of California Santa Barbara is awarded a grant to develop a collaborative environment for biological image sciences based on the emerging paradigm of cloud-computing and web-based protocols. Recent advances in microscopy imaging, image processing and computing technologies enable large-scale biological experiments that generate not only large collections of images and video, but also pose new computing and information processing challenges. This project addresses core challenges concerning large scale, unstructured biological images and video collections. These include providing ubiquitous access to images, videos and metadata resources; creating easily accessible image and video analysis, visualizations and work flows; and publishing both data and analysis resources. Streamlining collaborative efforts across teams with online virtual environments will improve scientific productivity, enhance understanding of complex phenomena and allow a growing number of researchers to quantify conditions based on image evidence that so far have remained subjective. The BISQUE (Bio-Image Semantic Query and Environment) open-source platform is being developed keeping these requirements in mind. This project will focus on scalability issues concerning analysis and annotations, computational scalability with distributed computing and cloud enabled services, sophisticated new methods for video and 3D-5D image analysis/visualization, and validation and curation of data and methods. Furthermore, the project will provide individual researchers and laboratories with the means to publish and share data and analysis techniques, thus creating opportunities for cross-fertilization of ideas.The research will lead to new paradigms for management of image data in diverse scientific fields. One specific area that will immediately benefit is quantitative biology, where large-scale quantitative analysis of information will enable new scientific discoveries and reproducible results. The Bisque platform, with its web-enabled tools and seamless support for demanding computations, will allow diverse labs to publish both scientific datasets and analysis in an easy to use form. Bisque will be used in teaching and research by graduate and undergraduate students. There will be opportunities for undergraduates and high-school students for summer research internships. Through workshops, online tutorials, video demos, and the iPlant discovery environment, this project will ensure outreach to a broader spectrum of researchers. For more information and access to the Bisque platform, visit the website at http://www.bioimage.ucsb.edu/bisque.
加州大学圣巴巴拉分校获得了一笔拨款,用于开发基于云计算和基于网络的协议的新兴范例的生物图像科学协作环境。显微成像、图像处理和计算技术的最新进展使得大规模生物实验成为可能,这些实验不仅产生大量图像和视频,还带来了新的计算和信息处理挑战。该项目解决了有关大规模、非结构化生物图像和视频采集的核心挑战。其中包括提供对图像、视频和元数据资源的无处不在的访问;创建易于访问的图像和视频分析、可视化和工作流程;并发布数据和分析资源。通过在线虚拟环境简化团队之间的协作工作将提高科学生产力,增强对复杂现象的理解,并使越来越多的研究人员能够根据迄今为止仍然主观的图像证据来量化条件。 BISQUE(生物图像语义查询和环境)开源平台的开发始终牢记这些要求。该项目将重点关注有关分析和注释的可扩展性问题、分布式计算和云服务的计算可扩展性、视频和 3D-5D 图像分析/可视化的复杂新方法以及数据和方法的验证和管理。此外,该项目将为个人研究人员和实验室提供发布和共享数据和分析技术的手段,从而为思想的交叉传播创造机会。该研究将为不同科学领域的图像数据管理带来新的范例。将立即受益的一个特定领域是定量生物学,其中大规模的信息定量分析将实现新的科学发现和可重复的结果。 Bisque 平台凭借其网络工具和对高要求计算的无缝支持,将允许不同的实验室以易于使用的形式发布科学数据集和分析。 Bisque 将用于研究生和本科生的教学和研究。本科生和高中生将有机会进行暑期研究实习。通过研讨会、在线教程、视频演示和 iPlant 发现环境,该项目将确保覆盖更广泛的研究人员。欲了解更多信息和访问 Bisque 平台,请访问网站:http://www.bioimage.ucsb.edu/bisque。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bangalore Manjunath其他文献

Bangalore Manjunath的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bangalore Manjunath', 18)}}的其他基金

SI2-SSI: LIMPID: Large-Scale IMage Processing Infrastructure Development
SI2-SSI:LIMPID:大规模图像处理基础设施开发
  • 批准号:
    1664172
  • 财政年份:
    2017
  • 资助金额:
    $ 88.8万
  • 项目类别:
    Standard Grant
EAGER: Collaborative 3D Materials Science Research in the Cloud
EAGER:云端协作 3D 材料科学研究
  • 批准号:
    1650972
  • 财政年份:
    2016
  • 资助金额:
    $ 88.8万
  • 项目类别:
    Standard Grant
CDI-Type-II: Computational Challenges in the Discovery and Understanding of Complex Boiological Structures through Multimodal Imaging
CDI-Type-II:通过多模态成像发现和理解复杂生物结构的计算挑战
  • 批准号:
    0941717
  • 财政年份:
    2009
  • 资助金额:
    $ 88.8万
  • 项目类别:
    Standard Grant
III-CXT-Large: Working with Uncertain Data in Exploring Scientific Images
III-CXT-Large:在探索科学图像时使用不确定数据
  • 批准号:
    0808772
  • 财政年份:
    2008
  • 资助金额:
    $ 88.8万
  • 项目类别:
    Standard Grant
Information Technology Research (ITR): Next-Generation Bio-Molecular Imaging and Information Discovery
信息技术研究 (ITR):下一代生物分子成像和信息发现
  • 批准号:
    0331697
  • 财政年份:
    2003
  • 资助金额:
    $ 88.8万
  • 项目类别:
    Cooperative Agreement
IGERT: Graduate Training Program in Interactive Digital Multimedia
IGERT:交互式数字多媒体研究生培训计划
  • 批准号:
    0221713
  • 财政年份:
    2002
  • 资助金额:
    $ 88.8万
  • 项目类别:
    Continuing Grant
An Image Thesaurus for Content Based Search Using Texture and Color
使用纹理和颜色进行基于内容搜索的图像同义词库
  • 批准号:
    9704785
  • 财政年份:
    1997
  • 资助金额:
    $ 88.8万
  • 项目类别:
    Continuing Grant

相似国自然基金

水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
  • 批准号:
    32070202
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

Development of a new solid tritium breeder blanket
新型固体氚增殖毯的研制
  • 批准号:
    2908923
  • 财政年份:
    2027
  • 资助金额:
    $ 88.8万
  • 项目类别:
    Studentship
Optimal utility-based design of oncology clinical development programmes
基于效用的肿瘤学临床开发项目的优化设计
  • 批准号:
    2734768
  • 财政年份:
    2026
  • 资助金额:
    $ 88.8万
  • 项目类别:
    Studentship
REU Site: Microbial Biofilm Development, Resistance, & Community Structure
REU 网站:微生物生物膜的发展、耐药性、
  • 批准号:
    2349311
  • 财政年份:
    2025
  • 资助金额:
    $ 88.8万
  • 项目类别:
    Continuing Grant
SoundDecisions - Musical Listening, Decision Making, And Equitable Development In The Mekong Delta
SoundDecisions - 湄公河三角洲的音乐聆听、决策和公平发展
  • 批准号:
    EP/Z000424/1
  • 财政年份:
    2025
  • 资助金额:
    $ 88.8万
  • 项目类别:
    Research Grant
Bio-MATSUPER: Development of high-performance supercapacitors based on bio-based carbon materials
Bio-MATSUPER:开发基于生物基碳材料的高性能超级电容器
  • 批准号:
    EP/Z001013/1
  • 财政年份:
    2025
  • 资助金额:
    $ 88.8万
  • 项目类别:
    Fellowship
Development of a Cell-Based Assay for Tetanus Vaccine Quality Control
破伤风疫苗质量控制细胞检测方法的开发
  • 批准号:
    10101986
  • 财政年份:
    2024
  • 资助金额:
    $ 88.8万
  • 项目类别:
    Collaborative R&D
HURR — Platform Development
HURR – 平台开发
  • 批准号:
    10103254
  • 财政年份:
    2024
  • 资助金额:
    $ 88.8万
  • 项目类别:
    Investment Accelerator
Automatic battery swapping cabinet development for scalability of e-mobility in Uganda
自动电池交换柜开发,以提高乌干达电动汽车的可扩展性
  • 批准号:
    10080435
  • 财政年份:
    2024
  • 资助金额:
    $ 88.8万
  • 项目类别:
    Collaborative R&D
Development of digital diagnostics services for Parkinson’s disease
开发帕金森病数字诊断服务
  • 批准号:
    10086932
  • 财政年份:
    2024
  • 资助金额:
    $ 88.8万
  • 项目类别:
    Collaborative R&D
RestoreDNA: Development of scalable eDNA-based solutions for biodiversity regulators and nature-related disclosure
RestoreDNA:为生物多样性监管机构和自然相关披露开发可扩展的基于 eDNA 的解决方案
  • 批准号:
    10086990
  • 财政年份:
    2024
  • 资助金额:
    $ 88.8万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了