Floer Theories in Gauge Theory and Symplectic Geometry
规范论和辛几何中的弗洛尔理论
基本信息
- 批准号:0333163
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-08-01 至 2007-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Building on ideas and techniques developed in proposer's previous works,the proposal is to pursue two projects related to aspects of Floer theory.The first is to relate the 3- and 4-manifold invariants recently definedby Ozsvath and Szabo (OS) with the Seiberg-Witten invariants (SW), based on an extension of the geometric picture underlying Taubes's proof of the equivalence of Seiberg-Witten invariants and Gromov invariants of symplectic 4-manifolds. Since the two definitions (OS vs SW) aredrastically different and each has its own advantage, a relation ofthe two should yield important consequences in low-dimensional topology.The second project is to extend and generalize the proposer's recentwork on Floer-theoretic torsions. These are symplectic invariants which on one hand refine the Floer homology, on the other hand haveinteresting relations with "1-loop" Gromov-Witten invariants. The relation remains to be better understood, yet it has already been used to obtain results in symplectic topology which are beyond thethe reach of Floer homologies. Moreover, the Lagrangian intersectionversion of this invariant should be regarded as a simplest example of"open Gromov-Witten invariants", which though still not rigorouslydefined in general, are expected to relate to the Chern-Simons invariants according to the physicists (Vafa, Witten et al).This proposal showcases the recent fertile interactions between mathematics and high energy physics. Gauge-theoretic invariants,enumeratitve invariants of holomorphic curves, and Floer theoryall have their origin in physics, yet have since yielded the mostimportant recent results in the fields of low dimensional topology andsymplectic geometry. The proposal deals with fascinating relationsamong these physics-inspired invariants, and their applications to topology.
基于提议者以前的工作中发展的思想和技术,该提议是进行与Floer理论有关的两个项目。第一个是将最近由Ozsvath和Szabo(OS)定义的3-和4-流形不变量与Seiberg-Witten不变量(SW)联系起来,基于Taubes对Seiberg等价性的证明所依据的几何图像的扩展,辛4-流形的维滕不变量和格罗莫夫不变量。由于这两个定义(OS vs SW)有着显著的不同,并且各有其优点,因此两者之间的关系在低维拓扑中应该会产生重要的结果。这些是辛不变量,一方面完善了Floer同调,另一方面与“1-loop”Gromov-Witten不变量有着有趣的关系。这种关系仍有待更好地理解,但它已经被用来获得辛拓扑的结果,这超出了thethe达到的弗洛尔同调。此外,这个不变量的拉格朗日交形式应该被看作是“开放的Gromov-维滕不变量”的一个最简单的例子,虽然它在一般意义上还没有严格的定义,但根据物理学家(Vafa,维滕等人)的观点,它应该与Chern-Simons不变量联系起来。规范理论不变量、全纯曲线的枚举不变量和Floer理论都起源于物理学,但在低维拓扑学和辛几何学领域产生了最重要的结果。该提案涉及迷人的relationsamong这些物理启发的不变量,以及它们的应用拓扑。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yi-Jen Lee其他文献
Non-contractible periodic orbits, Gromov invariants, and Floer-theoretic torsions
- DOI:
- 发表时间:
2003-08 - 期刊:
- 影响因子:0
- 作者:
Yi-Jen Lee - 通讯作者:
Yi-Jen Lee
Yi-Jen Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yi-Jen Lee', 18)}}的其他基金
Collaborative Research: Illinois-Indiana symplectic geometry conference
合作研究:伊利诺伊州-印第安纳州辛几何会议
- 批准号:
0757864 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
Floer theory in gauge theory and symplectic geometry
规范论和辛几何中的弗洛尔理论
- 批准号:
0604890 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Non-perturbative dynamics of chiral gauge theories
手性规范理论的非微扰动力学
- 批准号:
23K03382 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies of five-dimensional supersymmetric gauge theories from web diagrams which characterize Calabi-Yau spaces
从表征 Calabi-Yau 空间的网络图研究五维超对称规范理论
- 批准号:
23K03396 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of moduli spaces of vacua of supersymmetric gauge theories by geometric representation theory
用几何表示理论研究超对称规范理论真空模空间
- 批准号:
23K03067 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Planned to be the infrared dynamics of supersymmetric gauge theories
计划成为超对称规范理论的红外动力学
- 批准号:
2872837 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Gauge Theories and String Theory Dynamics
规范理论和弦理论动力学
- 批准号:
SAPIN-2019-00028 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Subatomic Physics Envelope - Individual
CAREER: Geometric Quantum Order: Fractons, Tensor Gauge Theories and Beyond
职业:几何量子阶:分形、张量规范理论及其他
- 批准号:
2045181 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant
Chiral Gauge Theories: From Strong Coupling to the Standard Model
手性规范理论:从强耦合到标准模型
- 批准号:
EP/V047655/1 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Research Grant
Gauge Theories and String Theory Dynamics
规范理论和弦理论动力学
- 批准号:
SAPIN-2019-00028 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Subatomic Physics Envelope - Individual