Topics in Quiver Gauge Theories
箭袋规范理论主题
基本信息
- 批准号:2757471
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The data of certain supersymmetric gauge theories can be contained in a diagram called a quiver. We aim to study the moduli space (of vacua) of various quiver gauge theories in different dimensions and with various amounts of supersymmetry.The Hilbert series of Higgs and Coulomb branches of quiver gauge theories allow us to understand the gauge invariant operators that parameterise these moduli spaces. These are often algebraic varieties such as (closures of) nilpotent orbits of classical and exceptional algebras. This has been interesting for both physicists and mathematicians. Computations of Hilbert series for Higgs and Coulomb branches of various quiver gauge theories and interpreting physics or mathematics from these would be a large focus of the project.The dynamics of quiver gauge theories can be realised using the brane construction from string theory. Duality symmetries such as 3d mirror symmetry, for example, are realised as branes and relate the Higgs and Coulomb branches of a quiver gauge theory. It would be a goal for this project, to better understand certain quiver gauge theories as a brane system.
某些超对称规范理论的数据可以包含在一个称为“图”的图中。我们的目标是研究在不同维度和不同超对称性下的各种超规范理论的模空间(真空)。希格斯的希尔伯特级数和超规范理论的库仑分支使我们能够理解参数化这些模空间的规范不变算子。这些通常是代数变种,例如经典代数和例外代数的幂零轨道(的闭包)。这对物理学家和数学家来说都很有趣。计算希格斯和库仑分支的希尔伯特级数,并从这些理论中解释物理或数学,将是该项目的一个大焦点。希格斯和库仑分支的动力学可以使用弦理论的膜结构来实现。例如,3d镜像对称等二元对称性被实现为膜,并与颤动规范理论的希格斯分支和库仑分支相关。这将是这个项目的一个目标,更好地理解某些作为膜系统的规范理论。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Quiver表示范畴的同调理论与导出范畴
- 批准号:
- 批准年份:2020
- 资助金额:32 万元
- 项目类别:地区科学基金项目
Kronheimer-Nakajima quiver 模空间与有理曲面
- 批准号:11401489
- 批准年份:2014
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
(量子)cluster代数与quiver表示
- 批准号:11301282
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
结合代数的Quiver刻划和Hopf代数表示型分类以及与量子群理论的联系
- 批准号:10571153
- 批准年份:2005
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
Quiver Gauge Theory, String Theory and Quantum Field Theory.
箭袋规范理论、弦理论和量子场论。
- 批准号:
2890913 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
From Quiver Yangians to Gauge/Bethe Correspondence
从 Quiver Yangians 到 Gauge/Bethe 对应
- 批准号:
23KF0105 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Cell decompositions of quiver Grassmannians
箭袋格拉斯曼人的细胞分解
- 批准号:
2302620 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Mirror symmetry and quiver flag varieties
镜像对称和箭袋旗品种
- 批准号:
DGECR-2022-00436 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Launch Supplement
Mirror symmetry and quiver flag varieties
镜像对称和箭袋旗品种
- 批准号:
RGPIN-2022-03013 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Quiver representations in Topological Data Analysis
拓扑数据分析中的 Quiver 表示
- 批准号:
2580665 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Studentship
Invariant Theory and Complexity Theory for Quiver Representations and Tensors
Quiver 表示和张量的不变理论和复杂性理论
- 批准号:
2147769 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Representation theory of wild cyclotomic quiver Hecke algebras and the symmetric group
狂野分圆箭袋Hecke代数和对称群的表示论
- 批准号:
21K03163 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Affine cluster algebras as dynamical systems, surface triangulations, quiver representations and friezes
仿射簇代数作为动力系统、表面三角测量、箭袋表示和饰带
- 批准号:
21F20788 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Quivers and quiver representations
箭袋和箭袋表示
- 批准号:
563566-2021 - 财政年份:2021
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards