IGERT: Program in Computational Biology (COB)
IGERT:计算生物学项目(COB)
基本信息
- 批准号:0333389
- 负责人:
- 金额:$ 373.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-10-01 至 2012-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many achievements in the biological and biomedical sciences are fueled by advances in technology and computational science. To address the complex challenges in the biological sciences in the 21st century, there is a growing need for professionals who can translate scientific problems in biology into mathematics and computations; for such productive work, familiarity with modern scientific computing approaches as well as key biological challenges is essential.Intellectual Merit: This IGERT award is for a multidisciplinary Computational Biology (COB) doctoral program at NYU and MSSM targeting students interested in pursuing research in biology/biomedicine who require a transition from/to the mathematical/computer/physical sciences to best meet scientific challenges and career goals. This experimental, bidirectional program will offer integrative training that exploits NYU's strengths in applied mathematics, computer science, biology, and biochemistry, and Sinai's leadership in biomedicine. The major COB research themes - macromolecular modeling, computational genomics, and physiological modeling - will train students to investigate biological systems spanning wide temporal and spatial scales, from atoms and macromolecules, to cells and organs, to organisms. Modeling biological systems across such scales is essential for a modern systems biology approach aimed at understanding physiological processes and diseases and applying this knowledge to biomedicine.To integrate training in biological and computational areas and provide trainees broad scientific perspectives and work experiences, the COB PhD program includes: (1) Dual faculty mentorship for thesis research; (2) Interdisciplinary training through flexible and background-tailored tracks in scientific computing and computational biology (courses in computer science, applied mathematics, biology, and biomedicine), trainee-led seminars, and ethics/research conduct courses, while ensuring competitive time to degree (5 years); (3) Summer internships in industry, academia, government (Agilent, IBM, Celera, Merck, Novasite and 3D Pharmaceuticals, supercomputing centers), or international laboratories; (4) Learning environments and activities that promote interdisciplinary interactions and broader collaborations within and outside NYU/MSSM, including: trainee-led COB seminars, annual COB retreat, and common COB lab/lounge; and (5) Mentoring and career development activities to ensure student retention, especially women and underrepresented groups, through student advisory committees, trainee-led support group, and partnerships with Burroughs Wellcome Fund and NYC's IGERT programs at CUNY and Columbia. The COB doctoral program will be evaluated and evolved continuously by its executive and internal/external advisors in close collaboration with the pedagogical experts of NYU's Center for Teaching Excellence (CTE).Broader Impacts: COB will train math/computer science students to successfully model biological systems and, in turn, provide biology students the grounding in computational techniques so they can tailor the model and algorithms to specific biological problems. To help bridge disciplinary gaps, we will design background-tailored short (non-credit) courses before Year 1 and promote peer learning by pairing students from complementary backgrounds. We expect that COB's activities will enable trainees to act as catalysts for novel interdisciplinary collaborations and to acquire expertise in cutting-edge research areas; these experiences will prepare them uniquely for research and education careers in academia, industry, and government. In addition, COB's program of integrating scientific grounding, experience in team-oriented multidisciplinary projects, mentoring, and career broadening activities will serve as a new model of graduate training at NYU/MSSM and beyond, promote the development of curricula for computational biology, and provide the opportunity to develop the COB doctoral degree at NYU based on the new model. Recognizing the urgent need for diversity in the sciences, we will make concerted efforts in conjunction with participating departments and with successful new minority initiatives at NYU to recruit and retain the brightest students, especially women and other underrepresented groups. IGERT is an NSF-wide program intended to meet the challenges of educating U.S. Ph.D. scientists and engineers with the interdisciplinary background, deep knowledge in a chosen discipline, and the technical, professional, and personal skills needed for the career demands of the future. The program is intended to catalyze a cultural change in graduate education by establishing innovative new models for graduate education and training in a fertile environment for collaborative research that transcends traditional disciplinary boundaries. In this sixth year of the program, awards are being made to institutions for programs that collectively span the areas of science and engineering supported by NSF.
生物和生物医学科学的许多成就都是由技术和计算科学的进步推动的。为了应对世纪生物科学的复杂挑战,越来越需要能够将生物学中的科学问题转化为数学和计算的专业人员;对于这种富有成效的工作,熟悉现代科学计算方法以及关键的生物学挑战是必不可少的。智力优势:这个IGERT奖是一个多学科的计算生物学(COB)博士课程在纽约大学和MSSM针对学生有兴趣从事生物学/生物医学研究谁需要从/到数学/计算机/生物医学的过渡。物理科学,以最好地满足科学挑战和职业目标。这个实验性的双向计划将提供综合培训,利用纽约大学在应用数学,计算机科学,生物学和生物化学方面的优势,以及西奈半岛在生物医学方面的领导地位。主要的COB研究主题-大分子建模,计算基因组学和生理建模-将培养学生研究跨越广泛的时间和空间尺度的生物系统,从原子和大分子,细胞和器官,生物体。在这样的尺度上模拟生物系统对于现代系统生物学方法是必不可少的,目的是了解生理过程和疾病,并将这些知识应用于生物医学。为了整合生物和计算领域的培训,并为学员提供广泛的科学观点和工作经验,COB博士课程包括:(1)双教师指导论文研究;(2)通过科学计算和计算生物学方面灵活和根据背景量身定制的轨道进行跨学科培训(计算机科学,应用数学,生物学和生物医学课程),学员主导的研讨会,以及伦理/研究行为课程,同时确保有竞争力的学位时间(5年);(3)在工业界、学术界、政府部门的暑期实习(安捷伦,IBM,Celera,默克,Novasite和3D制药,超级计算中心)或国际实验室;(4)促进跨学科互动和NYU/MSSM内外更广泛合作的学习环境和活动,包括:受训者领导的COB研讨会,年度COB务虚会和共同的COB实验室/休息室;和(5)指导和职业发展活动,以确保学生保留,特别是妇女和代表性不足的群体,通过学生咨询委员会,受训者领导的支持小组,并与巴勒斯惠康基金和纽约市的IGERT计划在纽约市立大学和哥伦比亚的伙伴关系。 COB博士课程将由其执行和内部/外部顾问与纽约大学卓越教学中心(CTE)的教学专家密切合作进行评估和不断发展。COB将培训数学/计算机科学专业的学生成功地模拟生物系统,反过来,为生物学学生提供计算技术的基础,使他们能够针对特定的生物问题定制模型和算法。为了帮助弥合学科差距,我们将在第一年之前设计背景定制的短期(非学分)课程,并通过配对来自互补背景的学生来促进同伴学习。 我们希望COB的活动将使学员能够成为新的跨学科合作的催化剂,并获得尖端研究领域的专业知识;这些经验将为他们在学术界,工业界和政府的研究和教育事业做好独特的准备。此外,COB的整合科学基础,在团队为导向的多学科项目,指导和职业拓展活动的经验计划将作为在纽约大学/MSSM及以后的研究生培训的新模式,促进课程的发展计算生物学,并提供机会,在纽约大学发展COB博士学位的基础上的新模式。认识到科学多样性的迫切需要,我们将与参与部门以及纽约大学成功的新少数民族举措共同努力,招募和留住最聪明的学生,特别是女性和其他代表性不足的群体。IGERT是一个NSF范围内的计划,旨在满足教育美国博士的挑战。具有跨学科背景的科学家和工程师,在所选学科的深厚知识,以及未来职业需求所需的技术,专业和个人技能。该计划旨在通过建立创新的研究生教育和培训新模式,在超越传统学科界限的合作研究的肥沃环境中促进研究生教育的文化变革。在该计划的第六个年头,奖项正在颁发给那些共同跨越NSF支持的科学和工程领域的计划机构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Shelley其他文献
Instant Neural Radiance Fields
即时神经辐射场
- DOI:
10.1145/3532833.3538678 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
T. Müller;Alex Evans;Christoph Schied;Marco Foco;A. Bódis;Isaac Deutsch;Michael Shelley;A. Keller - 通讯作者:
A. Keller
<em>C. Elegans</em> Chromosomes Connect to Centrosomes by Anchoring into the Spindle Network
- DOI:
10.1016/j.bpj.2017.11.2112 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
Stefanie Redemann;Johannes Baumgart;Norbert Lindow;Michael Shelley;Ehssan Nazockdast;Andrea Kratz;Steffen Prohaska;Jan Brugues;Sebastian Fürthauer;Thomas Müller-Reichert - 通讯作者:
Thomas Müller-Reichert
Michael Shelley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Shelley', 18)}}的其他基金
Collaborative research: MODULUS: Nuclear envelope shape change coordination with chromosome segregation in mitosis in fission yeast
合作研究:MODULUS:核膜形状变化与裂殖酵母有丝分裂中染色体分离的协调
- 批准号:
2133261 - 财政年份:2022
- 资助金额:
$ 373.3万 - 项目类别:
Standard Grant
Collaborative Research: Multiscale engineering of active stress in biomaterials
合作研究:生物材料主动应力的多尺度工程
- 批准号:
2004469 - 财政年份:2020
- 资助金额:
$ 373.3万 - 项目类别:
Continuing Grant
Collaborative Research: Multiscale Study of Active Cellular Matter: Simulation, Modeling, and Analysis
合作研究:活性细胞物质的多尺度研究:模拟、建模和分析
- 批准号:
1620331 - 财政年份:2016
- 资助金额:
$ 373.3万 - 项目类别:
Standard Grant
Collaborative Research: Fracture in Soft Organic Solids -The Variational View
合作研究:软有机固体的断裂 - 变分视图
- 批准号:
1615839 - 财政年份:2016
- 资助金额:
$ 373.3万 - 项目类别:
Standard Grant
Collaborative Research: FRG: Understanding and Controlling Active Fluids through Modeling, Simulation, and Experiment
合作研究:FRG:通过建模、模拟和实验理解和控制活性流体
- 批准号:
1463962 - 财政年份:2015
- 资助金额:
$ 373.3万 - 项目类别:
Continuing Grant
Collaborative Research: The Analysis and Simulation of Biologically Active Suspensions
合作研究:生物活性悬浮液的分析与模拟
- 批准号:
0920930 - 财政年份:2009
- 资助金额:
$ 373.3万 - 项目类别:
Standard Grant
Collaborative Research: MSPA-ENG: Interplay of Biosensing and Locomotion in Confined Microfluidic Environments
合作研究:MSPA-ENG:受限微流体环境中生物传感和运动的相互作用
- 批准号:
0700669 - 财政年份:2007
- 资助金额:
$ 373.3万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Dynamics of elastic biostructures in complex fluids
FRG:合作研究:复杂流体中弹性生物结构的动力学
- 批准号:
0652775 - 财政年份:2007
- 资助金额:
$ 373.3万 - 项目类别:
Standard Grant
Dynamics of Fiber Suspensions and their Applications
纤维悬浮液动力学及其应用
- 批准号:
0412203 - 财政年份:2004
- 资助金额:
$ 373.3万 - 项目类别:
Standard Grant
SGER: Proposal forModeling the Dynamics of Shape Change in Liquid Crystal Elastomer Systems
SGER:液晶弹性体系统形状变化动力学建模提案
- 批准号:
0440299 - 财政年份:2004
- 资助金额:
$ 373.3万 - 项目类别:
Standard Grant
相似海外基金
REU Site: Computational and Applied Mathematics Program
REU 网站:计算和应用数学项目
- 批准号:
2348984 - 财政年份:2024
- 资助金额:
$ 373.3万 - 项目类别:
Continuing Grant
REU Site: A Cyberlinked Program in Computational Biomolecular Structure & Design
REU 网站:计算生物分子结构的网络链接程序
- 批准号:
2244288 - 财政年份:2023
- 资助金额:
$ 373.3万 - 项目类别:
Standard Grant
Training program in computational approaches to brain and behavior
大脑和行为计算方法培训计划
- 批准号:
10746646 - 财政年份:2023
- 资助金额:
$ 373.3万 - 项目类别:
UCLA Pediatric Research Education Program in Bioinformatics, Computational Biology, and Omics
加州大学洛杉矶分校生物信息学、计算生物学和组学儿科研究教育项目
- 批准号:
10629061 - 财政年份:2023
- 资助金额:
$ 373.3万 - 项目类别:
Training program in computational approaches to brain and behavior
大脑和行为计算方法培训计划
- 批准号:
10879238 - 财政年份:2023
- 资助金额:
$ 373.3万 - 项目类别:
Computational Medicine in the Heart, Integrated Training Program
心脏计算医学综合培训计划
- 批准号:
10556918 - 财政年份:2023
- 资助金额:
$ 373.3万 - 项目类别:
Mayo Clinic Research Education Program in Computational Autonomic Neurobiology of Diabetes and Digestive and Kidney Diseases
梅奥诊所糖尿病、消化和肾脏疾病计算自主神经生物学研究教育项目
- 批准号:
10709578 - 财政年份:2022
- 资助金额:
$ 373.3万 - 项目类别:
Development of a new computational program for extensive bimolecular interaction analyses
开发用于广泛双分子相互作用分析的新计算程序
- 批准号:
580491-2022 - 财政年份:2022
- 资助金额:
$ 373.3万 - 项目类别:
University Undergraduate Student Research Awards
Graduate Training Program in Computational Biology, Bioinformatics and Biomedical Data Science (CBB)
计算生物学、生物信息学和生物医学数据科学研究生培训项目(CBB)
- 批准号:
10654859 - 财政年份:2022
- 资助金额:
$ 373.3万 - 项目类别:
REU Site: The University of Texas Rio Grande Valley REU Program on Applied Mathematics and Computational and Data Science
REU 网站:德克萨斯大学里奥格兰德河谷 REU 应用数学、计算和数据科学项目
- 批准号:
2150478 - 财政年份:2022
- 资助金额:
$ 373.3万 - 项目类别:
Standard Grant