IGERT: Vision and Learning in Humans and Machines
IGERT:人类和机器的视觉和学习
基本信息
- 批准号:0333451
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-10-01 至 2010-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Consider creating (a) a computer system to help physicians make a diagnosis using all of a patient's medical data and images along with millions of case histories; (b) intelligent buildings and cars that are aware of their occupants activities; (c) personal digital assistants that watch and learn your habits -- not only gathering information from the web but recalling where you had left your keys; or (d) a computer tutor that watches a child as she performs a science experiment. Each of these scenarios requires machines that can see and learn, and while there have been tremendous advances in computer vision and computational learning, current computer vision and learning systems for many applications (such as face recognition) are still inferior to the visual and learning capabilities of a toddler. Meanwhile, great strides in understanding visual recognition and learning in humans have been made with psychophysical and neurophysiological experiments. The intellectual merit of this proposal is its focus on creating novel interactions between the four areas of: computer and human vision, and human and machine learning. We believe these areas are intimately intertwined, and that the synergy of their simultaneous study will lead to breakthroughs in all four domains.Our goal in this IGERT is therefore to train a new generation of scientists and engineers who are as versed in the mathematical and physical foundations of computer vision and computational learning as they are in the biological and psychological basis of natural vision and learning. On the one hand, students will be trained to propose a computational model for some aspect of biological vision and then design experiments (fMRI, single cell recordings, psychophysics) to validate this model. On the other hand, they will be ready to expand the frontiers of learning theory and embed the resulting techniques in real-world machine vision applications. The broader impact of this program will be the development of a generation of scholars who will bring new tools to bear upon fundamental problems in human and computer vision, and human and machine learning.We will develop a new curriculum that introduces new cross-disciplinary courses to complement the current offerings. In addition, students accepted to the program will go through a two-week boot camp, before classes start, where they will receive intensive training in machine learning and vision using MatLab, perceptual psychophysics, and brain imaging. We will balance on-campus training with summer internships in industry.IGERT is an NSF-wide program intended to meet the challenges of educating U.S. Ph.D. scientists and engineers with the interdisciplinary background, deep knowledge in a chosen discipline, and the technical, professional, and personal skills needed for the career demands of the future. The program is intended to catalyze a cultural change in graduate education by establishing innovative new models for graduate education and training in a fertile environment for collaborative research that transcends traditional disciplinary boundaries. In this sixth year of the program, awards are being made to institutions for programs that collectively span the areas of science and engineering supported by NSF
考虑创建(a)一个计算机系统,帮助医生利用病人的所有医疗数据和图像沿着数百万病例历史进行诊断;(B)智能建筑和汽车,了解其居住者的活动;(c)个人数字助理,观察和了解你的习惯-不仅从网上收集信息,而且还能记住你把钥匙放在哪里;或者(d)一个在孩子做科学实验时观察她的计算机导师。 这些场景中的每一个都需要能够看到和学习的机器,虽然计算机视觉和计算学习已经取得了巨大的进步,但目前用于许多应用(如人脸识别)的计算机视觉和学习系统仍然不如蹒跚学步的孩子的视觉和学习能力。 与此同时,心理物理学和神经生理学实验在理解人类的视觉识别和学习方面取得了巨大进展。该提案的智力价值在于它专注于在计算机和人类视觉以及人类和机器学习这四个领域之间创建新的交互。我们相信这些领域紧密相连,同时进行研究的协同作用将导致所有四个领域的突破。因此,IGERT的目标是培养新一代的科学家和工程师,他们精通计算机视觉和计算学习的数学和物理基础,就像他们精通自然视觉和学习的生物和心理基础一样。 一方面,学生将被训练为生物视觉的某些方面提出一个计算模型,然后设计实验(功能磁共振成像,单细胞记录,心理物理学)来验证这个模型。 另一方面,他们将准备扩展学习理论的前沿,并将由此产生的技术嵌入到现实世界的机器视觉应用中。该计划的更广泛影响将是培养一代学者,他们将带来新的工具来解决人类和计算机视觉以及人类和机器学习的基本问题。我们将开发一个新的课程,引入新的跨学科课程,以补充现有课程。此外,接受该计划的学生将在课程开始前进行为期两周的靴子训练营,在那里他们将使用MatLab,感知心理物理学和大脑成像接受机器学习和视觉方面的强化培训。 IGERT是一个全国性的项目,旨在应对教育美国博士的挑战。具有跨学科背景的科学家和工程师,在所选学科的深厚知识,以及未来职业需求所需的技术,专业和个人技能。该计划旨在通过建立创新的研究生教育和培训新模式,在超越传统学科界限的合作研究的肥沃环境中促进研究生教育的文化变革。在该计划的第六个年头,奖项将颁发给由NSF支持的科学和工程领域的机构
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Virginia de Sa其他文献
Virginia de Sa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Virginia de Sa', 18)}}的其他基金
CHS: Small: Improving Usability and Reliability for Motor Imagery Brain Computer Interfaces
CHS:小型:提高运动想象脑机接口的可用性和可靠性
- 批准号:
1817226 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Continuing Grant
CHS: Small: A Novel P300 Brain-Computer Interface
CHS:小型:新型 P300 脑机接口
- 批准号:
1528214 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Continuing Grant
HCC: Small: Towards more natural and interactive brain-computer interfaces
HCC:小:迈向更自然和交互式的脑机接口
- 批准号:
1219200 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Continuing Grant
Divvy: Robust and Interactive Cluster Analysis
Divvy:稳健且交互式的聚类分析
- 批准号:
0963071 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
Lifelike visual feedback for brain-computer interface
脑机接口逼真的视觉反馈
- 批准号:
0756828 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Optimal Information Extraction in Intelligent Systems
职业:智能系统中的最佳信息提取
- 批准号:
0133996 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Continuing Grant
相似国自然基金
老年人群视障风险VISION管控模式构建与实证研究
- 批准号:71974198
- 批准年份:2019
- 资助金额:48.5 万元
- 项目类别:面上项目
相似海外基金
Learning to create Intelligent Solutions with Machine Learning and Computer Vision: A Pathway to AI Careers for Diverse High School Students
学习利用机器学习和计算机视觉创建智能解决方案:多元化高中生的人工智能职业之路
- 批准号:
2342574 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Teachers Learning to be Technology Accessibility Allies to Blind and Low-Vision Students in Science
职业:教师学习成为盲人和低视力学生在科学领域的技术无障碍盟友
- 批准号:
2334693 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Evolving Telecoms scope 3 decarbonisation: an open-access emissions datasource powered by Vision Machine Learning
不断发展的电信范围 3 脱碳:由视觉机器学习提供支持的开放获取排放数据源
- 批准号:
10111834 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313151 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Evaluating the Impact of the Promoting Active Learning and Mentoring (PALM) Network on Vision
协作研究:评估促进主动学习和指导 (PALM) 网络对视觉的影响
- 批准号:
2223276 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313149 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Pig ID: developing a deep learning machine vision system to track pigs using individual biometrics
Pig ID:开发深度学习机器视觉系统,利用个体生物识别技术跟踪猪
- 批准号:
BB/X001385/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Pig ID: developing a deep learning machine vision system to track pigs using individual biometrics
Pig ID:开发深度学习机器视觉系统,利用个体生物识别技术跟踪猪
- 批准号:
BB/X001830/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313150 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Toward describing fine-grained details in computer vision through visual discrimination learning
通过视觉辨别学习来描述计算机视觉中的细粒度细节
- 批准号:
23K16945 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists