CAREER: Optimal Information Extraction in Intelligent Systems
职业:智能系统中的最佳信息提取
基本信息
- 批准号:0133996
- 负责人:
- 金额:$ 45.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-07-01 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This is a Faculty Early Career Development (CAREER) award. The research will explore how an organism extracts information from its environment for learning and perception, both to understand human learning and to create better machine learning algorithms. The first objective is to develop and apply new algorithms to better understand the mapping in the sensory pathways. An important goal is to understand how the visual pathway computes the invariant responses observed in inferotemporal cortex. The second objective is to study the extraction of information from cross-sensory interaction and its role in the development of perceptual invariance. This work will involve integrated computer simulations, mathematical modeling, and psychological experiments. As part of this goal, the researcher will study input feature selection, output feature selection, and the general problem of how dimensions should best interact in machine learning algorithms. The final research goal is to bring together the new knowledge in constructing a better autonomous learning machine that can learn to recognize objects. The algorithm will be more modular than current algorithms and will collect its own training data autonomously through a camera, microphone, and other sensors.The educational goal is to train students in the lab as well as in the classes to think about problems from a variety of approaches. They will be educated in the advantages and limitations of computational modeling, computational analysis, psychophysics and electrophysiology.This CAREER award recognizes and supports the early career-development activities of a teacher-scholar who is likely to become an academic leader of the twenty-first century. The research will improve our understanding of optimal integration between sensory modalities. This will lead to improvement in computer sensing algorithms, including computer vision, speech recognition, and any other application where other sources of information may be available. The work is also expected to give insight to the general problem of how to optimally combine different sources of information for machine learning. The educational aspects of this project are designed to give students a multidisciplinary perspective along with specific skills allowing them to use and appreciate a variety of approaches and techniques.
这是一个教师早期职业发展(CAREER)奖。 该研究将探索生物体如何从其环境中提取信息进行学习和感知,以了解人类学习和创建更好的机器学习算法。 第一个目标是开发和应用新的算法,以更好地理解感觉通路中的映射。 一个重要的目标是了解视觉通路如何计算颞下皮层中观察到的不变反应。 第二个目标是研究从跨感觉交互中提取信息及其在知觉不变性发展中的作用。 这项工作将涉及综合计算机模拟,数学建模和心理实验。 作为这一目标的一部分,研究人员将研究输入特征选择,输出特征选择,以及维度如何在机器学习算法中最好地相互作用的一般问题。 最终的研究目标是将新的知识整合在一起,构建一个更好的自主学习机器,可以学习识别对象。 该算法将比当前的算法更加模块化,并将通过摄像头、麦克风和其他传感器自动收集自己的训练数据。教育目标是在实验室和课堂上培养学生从各种方法思考问题。 他们将在计算建模,计算分析,心理物理学和电生理学的优点和局限性的教育。这个职业生涯奖承认和支持的教师学者谁是可能成为一个学术领袖的21世纪的早期职业发展活动。 该研究将提高我们对感觉模态之间的最佳整合的理解。 这将导致计算机传感算法的改进,包括计算机视觉、语音识别和其他信息源可用的任何其他应用。 这项工作还有望深入了解如何最佳地将联合收割机不同的信息源结合起来进行机器学习的一般问题。 该项目的教育方面旨在为学生提供多学科的视角,沿着特定技能,使他们能够使用和欣赏各种方法和技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Virginia de Sa其他文献
Virginia de Sa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Virginia de Sa', 18)}}的其他基金
CHS: Small: Improving Usability and Reliability for Motor Imagery Brain Computer Interfaces
CHS:小型:提高运动想象脑机接口的可用性和可靠性
- 批准号:
1817226 - 财政年份:2018
- 资助金额:
$ 45.54万 - 项目类别:
Continuing Grant
CHS: Small: A Novel P300 Brain-Computer Interface
CHS:小型:新型 P300 脑机接口
- 批准号:
1528214 - 财政年份:2015
- 资助金额:
$ 45.54万 - 项目类别:
Continuing Grant
HCC: Small: Towards more natural and interactive brain-computer interfaces
HCC:小:迈向更自然和交互式的脑机接口
- 批准号:
1219200 - 财政年份:2012
- 资助金额:
$ 45.54万 - 项目类别:
Continuing Grant
Divvy: Robust and Interactive Cluster Analysis
Divvy:稳健且交互式的聚类分析
- 批准号:
0963071 - 财政年份:2010
- 资助金额:
$ 45.54万 - 项目类别:
Standard Grant
Lifelike visual feedback for brain-computer interface
脑机接口逼真的视觉反馈
- 批准号:
0756828 - 财政年份:2008
- 资助金额:
$ 45.54万 - 项目类别:
Standard Grant
IGERT: Vision and Learning in Humans and Machines
IGERT:人类和机器的视觉和学习
- 批准号:
0333451 - 财政年份:2003
- 资助金额:
$ 45.54万 - 项目类别:
Continuing Grant
相似海外基金
Construction of Bayesian Optimal Decision Tree Algorithm Using Metatree and Latent Class Tree by Information Theory
基于信息论的元树和潜在类树构建贝叶斯最优决策树算法
- 批准号:
23K03863 - 财政年份:2023
- 资助金额:
$ 45.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Optimal Fluctuation Exploitation in Information Ratchets
信息棘轮中的最优波动利用
- 批准号:
559565-2021 - 财政年份:2022
- 资助金额:
$ 45.54万 - 项目类别:
Postgraduate Scholarships - Doctoral
Elucidation of pathophysiology of non-pulmonary artery-derived atrial fibrillation based on genomic information and application to optimal treatment
基于基因组信息阐明非肺动脉源性房颤的病理生理学并应用于最佳治疗
- 批准号:
22K08184 - 财政年份:2022
- 资助金额:
$ 45.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Characterizing patient preferences and personalizing risk information for optimal patient-centered management of coronary artery disease
描述患者偏好并个性化风险信息,以实现以患者为中心的冠状动脉疾病最佳管理
- 批准号:
470243 - 财政年份:2022
- 资助金额:
$ 45.54万 - 项目类别:
Operating Grants
ERI: Improving the Learning Efficiency of Adaptive Optimal Control Systems in Information-Limited Environments
ERI:提高信息有限环境中自适应最优控制系统的学习效率
- 批准号:
2138206 - 财政年份:2022
- 资助金额:
$ 45.54万 - 项目类别:
Standard Grant
Portfolio theory, optimal transport and information geometry
投资组合理论、最优传输和信息几何
- 批准号:
RGPIN-2019-04419 - 财政年份:2022
- 资助金额:
$ 45.54万 - 项目类别:
Discovery Grants Program - Individual
Quantum Information-Constrained Optimal Transport
量子信息约束最优传输
- 批准号:
580847-2022 - 财政年份:2022
- 资助金额:
$ 45.54万 - 项目类别:
Alliance Grants
Optimal insurance design in the presence of imperfect information
不完善信息下的最优保险设计
- 批准号:
RGPIN-2020-04204 - 财政年份:2022
- 资助金额:
$ 45.54万 - 项目类别:
Discovery Grants Program - Individual
Portfolio theory, optimal transport and information geometry
投资组合理论、最优传输和信息几何
- 批准号:
RGPIN-2019-04419 - 财政年份:2021
- 资助金额:
$ 45.54万 - 项目类别:
Discovery Grants Program - Individual
Optimal insurance design in the presence of imperfect information
不完善信息下的最优保险设计
- 批准号:
RGPIN-2020-04204 - 财政年份:2021
- 资助金额:
$ 45.54万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




