Convexity Problems in Submanifold Geometry and Topology
子流形几何和拓扑中的凸性问题
基本信息
- 批准号:0336455
- 负责人:
- 金额:$ 7.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-05-09 至 2005-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACT DMS - 0204190.The principal investigator is interested in concrete problems in classical differential geometry and topology of curves and surfaces in Euclidean space, specially those which involve some notion of convexity. The proposed investigations include: (i) Certain nodal domains (shadows) cast on a surface by vectorfields which correspond to natural transformations, and developing the applications of these for surfaces of constant mean curvature, and surfaces whose gauss map satisfies a two-piece-property; (ii) Closed curves without parallel tangent lines(skew loops) and their relation to quadric surfaces; (iii) Global properties oflocally convex surfaces with boundary, including connections with Monge-Ampereequations, and a convex hull property which is dual to that of minimal surfaces;(iv) Existence and regularity of certain deformations of space curves (unfoldings)to study extremals of knot energies and distortion.The study of curves and surfaces has been the primary motivation for the development of much of differential geometry and geometric topology, which in turn has found significant applications in physical sciences. Notions of convexity have often proved fruitful for solving problems in this area, specially those which involve optimizing various quantities. Those aspects of the principal investigator's work dealing with shadows on illuminated surfaces is motivated in part by a study of soap films andmay lead to applications for computer vision. Further, the investigations on knotenergies may be of interest in studying the DNA. The primary motivation of theinvestigator, however, is based on aesthetic considerations and the intuitivevisual appeal of low dimensional geometric problems.
摘要DMS -0204190。主要研究者对经典微分几何以及欧几里得空间中曲线和曲面的拓扑中的具体问题感兴趣,特别是那些涉及凸性概念的问题。拟研究的内容包括:(i)由对应于自然变换的向量场投射在曲面上的某些节点域(阴影),并发展这些节点域在常平均曲率曲面和高斯映射满足两段性质的曲面上的应用;(ii)没有平行切线的闭曲线(3)有边界局部凸曲面的整体性质,包括与Monge-Amper方程的联系,以及与极小曲面对偶的凸船体性质;(iv)空间曲线的某些变形(展开)的存在性和规律性,以研究纽结能量和畸变的极值曲线和曲面的研究一直是微分几何和几何拓扑学发展的主要动力,这反过来又在物理科学中找到了重要的应用。 凸性的概念在解决这一领域的问题上经常被证明是富有成效的,特别是那些涉及优化各种数量的问题。 主要研究者处理照明表面上阴影的工作的部分动机是肥皂膜的研究,并可能导致计算机视觉的应用。此外,knotenergies的调查可能是在研究DNA的兴趣。然而,研究者的主要动机是基于美学考虑和低维几何问题的直观吸引力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mohammad Ghomi其他文献
Lightning transient response of bifurcation structure pylon and its empirical expression with high accuracy
- DOI:
10.1016/j.ijepes.2023.108967 - 发表时间:
2023-06-01 - 期刊:
- 影响因子:
- 作者:
Kai Yin;Mohammad Ghomi;Hanchi Zhang;Claus Leth Bak;Filipe Faria da Silva;Qian Wang - 通讯作者:
Qian Wang
Total diameter and area of closed submanifolds
- DOI:
10.1007/s00208-015-1173-4 - 发表时间:
2015-03-07 - 期刊:
- 影响因子:1.400
- 作者:
Mohammad Ghomi;Ralph Howard - 通讯作者:
Ralph Howard
Mohammad Ghomi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mohammad Ghomi', 18)}}的其他基金
Differential Geometry of Curves and Surfaces
曲线曲面的微分几何
- 批准号:
1308777 - 财政年份:2013
- 资助金额:
$ 7.08万 - 项目类别:
Standard Grant
Differential Geometry and Topology of Riemannian Submanifolds
黎曼子流形的微分几何和拓扑
- 批准号:
0806305 - 财政年份:2008
- 资助金额:
$ 7.08万 - 项目类别:
Standard Grant
CAREER: Classical Problems in Differential Geometry, Topology, and Convexity
职业:微分几何、拓扑和凸性的经典问题
- 批准号:
0332333 - 财政年份:2003
- 资助金额:
$ 7.08万 - 项目类别:
Standard Grant
Convexity Problems in Submanifold Geometry and Topology
子流形几何和拓扑中的凸性问题
- 批准号:
0204190 - 财政年份:2002
- 资助金额:
$ 7.08万 - 项目类别:
Standard Grant
相似海外基金
Understanding the role of trauma in alcohol and other drug-related problems
了解创伤在酒精和其他毒品相关问题中的作用
- 批准号:
DP240101473 - 财政年份:2024
- 资助金额:
$ 7.08万 - 项目类别:
Discovery Projects
Organic Bionics: Soft Materials to Solve Hard Problems in Neuroengineering
有机仿生学:解决神经工程难题的软材料
- 批准号:
FT230100154 - 财政年份:2024
- 资助金额:
$ 7.08万 - 项目类别:
ARC Future Fellowships
AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
- 批准号:
2332922 - 财政年份:2024
- 资助金额:
$ 7.08万 - 项目类别:
Standard Grant
CRII: AF: Streaming Approximability of Maximum Directed Cut and other Constraint Satisfaction Problems
CRII:AF:最大定向切割和其他约束满足问题的流近似性
- 批准号:
2348475 - 财政年份:2024
- 资助金额:
$ 7.08万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 7.08万 - 项目类别:
Standard Grant
Duration models related problems in econometrics
计量经济学中的持续时间模型相关问题
- 批准号:
23K25504 - 财政年份:2024
- 资助金额:
$ 7.08万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
- 批准号:
2350129 - 财政年份:2024
- 资助金额:
$ 7.08万 - 项目类别:
Standard Grant
SHF: Small: Taming Huge Page Problems for Memory Bulk Operations Using a Hardware/Software Co-Design Approach
SHF:小:使用硬件/软件协同设计方法解决内存批量操作的大页面问题
- 批准号:
2400014 - 财政年份:2024
- 资助金额:
$ 7.08万 - 项目类别:
Standard Grant
REU Site: Applied Mathematics in Real World Problems
REU 网站:现实世界问题中的应用数学
- 批准号:
2349382 - 财政年份:2024
- 资助金额:
$ 7.08万 - 项目类别:
Continuing Grant