Isospectrality: Length vs. Laplace Spectra and Isospectral Families
同谱性:长度与拉普拉斯谱和同谱族
基本信息
- 批准号:0338549
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-03-19 至 2008-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Project Abstract - Ruth Gornet - DMS-0204648This proposal addresses several topics in inverse spectralgeometry. In the first project, the Principal Investigator willshow that the classical trace formula, which relates the Laplaceand length spectra for generic manifolds, provides lessinformation about isospectral manifolds than was previouslyspeculated. In joint work with P. Perry, the wave trace onHeisenberg manifolds will be explicitly calculated in order tounderstand the behavior of the length vs. Laplace spectra.Additionally, a new notion of length spectrum will be studied inorder to prove a necessary condition that lengths of closedgeodesics on isospectral manifolds must satisfy. A further project(joint with J. McGowan) studies the p-form spectrum on lensspaces. The Principal Investigator has constructed examples oflens spaces whose p-form spectra are equal for certain p but withunequal spectra on functions. This behavior will be furtherstudied toward constructing p-isospectral lens spaces with unequalabsolute length spectrum; i.e., different lengths of closedgeodesics. In the final project (joint with R. Brooks) tools fromrepresentation theory of the symmetric groups will be used toconstruct an explicit upper bound on the number of isospectralRiemann surfaces of a fixed genus that can be constructed from theSunada method. When this final project is completed, an explicitupper bound on the number of nonisomorphic number fields with agiven zeta function will result.In 1966, Mark Kac popularized the question, "Can one hear theshape of a drum?" The mathematical formulation of this questionis: ``What geometric information is contained in the spectrum of aRiemannian manifold?'' Isospectrality, i.e., the study ofisospectral families and/or the geometric properties they may ormay not share, impacts areas outside of spectral geometry; theresearch funded by this proposal thus supports thepure-mathematical foundations of these areas. The first examplesof closed isospectral manifolds, Milnor's flat tori, have appearedin string theory in physics (related to mirror symmetry). Theempirical science of spectroscopy has studied frequencies of atomsand molecules to provide information about vibrating objects.Inverse spectral problems also arise in medical imaging,geophysical prospection, and non-destructive testing.
项目摘要- Ruth Gornet - DMS-0204648本提案涉及逆光谱几何学的几个主题。在第一个项目中,首席研究员将表明,经典的迹公式,它涉及的拉普拉斯和长度谱的一般流形,提供更少的信息isospectral流形比previouslyspecified。在与P.佩里的合作工作中,为了理解长度与拉普拉斯谱的关系,我们将明确地计算Heisenberg流形上的波迹,另外,为了证明等谱流形上闭测地线的长度必须满足的一个必要条件,我们将研究一个新的长度谱的概念。另一个项目(与J. McGowan联合)研究透镜空间上的p型谱。主要研究者已经构造了透镜空间的例子,其p-形式谱对于某些p是相等的,但在函数上具有不等谱。这种行为将进一步研究,以构建具有不等绝对长度谱的p-等谱透镜空间;即,不同长度的闭合测地线。在最后的项目(与R。布鲁克斯)工具的对称群的表示理论将被用来构造一个显式的上界的isospectralRiemann曲面的数量的一个固定的亏格,可以构造的Sunada方法。当这个最后的项目完成时,一个明确的上界的非同构数域的数量与给定zeta函数的结果。在1966年,马克·卡茨普及的问题,“一个人能听到鼓的形状吗?“这个问题的数学表述是:”黎曼流形的谱中包含什么几何信息?"等谱性,即,对光谱族和/或它们可能共享或不共享的几何特性的研究影响了光谱几何学之外的领域;因此,由该提案资助的研究支持了这些领域的纯数学基础。封闭等谱流形的第一个例子,米尔诺尔的平坦环面,已经出现在物理学的弦论中(与镜像对称有关)。光谱学的经验科学研究了原子和分子的频率,以提供有关振动物体的信息。逆光谱问题也出现在医学成像、地球物理勘探和无损测试中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruth Gornet其他文献
Isoscattering Schottky manifolds
等散射肖特基流形
- DOI:
10.1007/s000390050010 - 发表时间:
2000 - 期刊:
- 影响因子:0
- 作者:
R. Brooks;Ruth Gornet;P. Perry - 通讯作者:
P. Perry
Isospectral surfaces with distinct covering spectra via Cayley graphs
通过凯莱图具有不同覆盖光谱的等谱表面
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
B. Smit;Ruth Gornet;Craig J. Sutton - 通讯作者:
Craig J. Sutton
Riemannian nilmanifolds and the trace formula
黎曼尼尔流形和迹公式
- DOI:
10.1090/s0002-9947-05-03965-6 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Ruth Gornet - 通讯作者:
Ruth Gornet
The eta invariant on two-step nilmanifolds
两步尼尔流形上的 eta 不变量
- DOI:
10.4310/cag.2018.v26.n2.a2 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Ruth Gornet;Ken Richardson - 通讯作者:
Ken Richardson
Isospectral deformations of closed Riemannian manifolds with different scalar curvature
不同标量曲率闭黎曼流形的等谱变形
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
Carolyn S. Gordon;Ruth Gornet;D. Schueth;David L. Webb;E. Wilson - 通讯作者:
E. Wilson
Ruth Gornet的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ruth Gornet', 18)}}的其他基金
Isospectrality: Length vs. Laplace Spectra and Isospectral Families
同谱性:长度与拉普拉斯谱和同谱族
- 批准号:
0204648 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Standard Grant
POWRE: Spectral Geometry of Nilmanifolds and Kleinian Groups
POWRE:尼尔曼流形和克莱尼群的谱几何
- 批准号:
9753220 - 财政年份:1998
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Spectral Geometry & Representation Theory on Higher Step Riemannian Nilmanifolds
数学科学:谱几何
- 批准号:
9409209 - 财政年份:1994
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
玉米穗长QTL EAR LENGTH7 (qEL7)的生物学功能与作用机理研究
- 批准号:31871628
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Understanding the Dynamic Mechanical Adaptations of Bone Tissue at Small Length Scales
职业:了解小长度尺度下骨组织的动态机械适应
- 批准号:
2339836 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CRII: SCH: Towards Smart Patient Flow Management: Real-time Inpatient Length of Stay Modeling and Prediction
CRII:SCH:迈向智能患者流程管理:实时住院患者住院时间建模和预测
- 批准号:
2246158 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Leveraging CLEERE axial length data to improve myopia treatment
利用 CLEERE 眼轴长度数据改善近视治疗
- 批准号:
10725732 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Assessing how Prenatal Phthalate Exposure Disrupts Placental Transcriptional Regulation and Contributes to Changes in Gestational Length
评估产前邻苯二甲酸盐暴露如何扰乱胎盘转录调节并导致妊娠长度的变化
- 批准号:
10578186 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative Research: Rational Design of Ionene + Ionic Liquid Membranes Based on Understanding Gas Transport on Different Length Scales
合作研究:基于不同长度尺度气体传输的紫罗烯离子液体膜的合理设计
- 批准号:
2312000 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Novel x-ray interferometers for length metrology
用于长度计量的新型 X 射线干涉仪
- 批准号:
2880824 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Investigating the mechanisms of stereocilia length regulation and innovative strategies for restoring hearing
研究静纤毛长度调节机制和恢复听力的创新策略
- 批准号:
10678569 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Role of Phosphorylation in Determining Circadian Period Length and Temperature Compensation
磷酸化在确定昼夜节律长度和温度补偿中的作用
- 批准号:
10678253 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Identification of Positive Deviant Characteristics in Mitigating Biological Aging: Telomere Length as a Biomarker of Biological Aging
识别减轻生物衰老的正偏差特征:端粒长度作为生物衰老的生物标志物
- 批准号:
23K16301 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists