CRII: SCH: Towards Smart Patient Flow Management: Real-time Inpatient Length of Stay Modeling and Prediction
CRII:SCH:迈向智能患者流程管理:实时住院患者住院时间建模和预测
基本信息
- 批准号:2246158
- 负责人:
- 金额:$ 17.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Patient length of stay has been used as an essential criterion for the effective planning and management of hospital resources. Prolonged stay increases patients’ risk of hospital-acquired infections and disrupts patient flow and access to high-quality healthcare services. As such, a model that can reliably predict the length of stay for a specific patient is desirable to mitigate the prolonged stay and guide personalized decision-making. However, the length of stay can be affected by a multitude of factors and can vary based on different patients’ conditions and disease progression. The complex and dynamic nature of massive clinical data, not to mention the presence of a large portion of missing and censored values in the healthcare data, poses significant challenges for efficient modeling and dynamic prediction. This project aims to offer an integrated solution by establishing a pipeline consisting of advanced statistical modeling, monitoring, and deep learning techniques based on patient information collected from heterogeneous medical systems over time. The success of the project will catalyze a transition from a traditional standard-driven discharge scheduling service to a data-driven proactive scheduling paradigm. The success of the project will alleviate the hospital’s pressure on resource allocation and improve patient flow and, more importantly, pandemic preparedness. The project can provide opportunities for research-based interdisciplinary training of undergraduate and graduate students in health informatics, statistics, and artificial intelligence from diverse backgrounds, including women and underrepresented minorities.This project will address the critical challenges of healthcare data analysis, i.e., heterogeneity, multi-modality, and data sparsity. Conventional data-driven methods have been predominantly focused on identifying the factors that strongly influence the length of stay as opposed to predicting the length of stay itself. Moreover, the existing approaches failed to address the inherent uncertainty and were incapable of incorporating different data modalities and dynamic prediction. The project proposes a personalized framework by integration of advanced tensor fusion and time-to-event modeling techniques towards smart patient flow management, which ultimately allows for faster achievement of health outcomes and reduction of hospitalized costs. The proposed intelligent framework will advance the state-of-art research of real-time data fusion and personalized prognosis in the following aspects: (1) brings the data fusion and length of stay prediction into a unified framework; (2) facilitates personalized length of stay prediction in a real-time manner; (3) naturally has the capability to incorporate uncertainties in the decision-making process to provide a confident and intelligent scheduling service. Although the methodology is proposed for the patient length of stay prediction, it does not depend on any restrictive assumptions of domain knowledge and specific disease and thus can potentially be applied to a broad range of events predictions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
病人的住院时间已被用作有效规划和管理医院资源的一个重要标准。长期住院增加了患者在医院感染的风险,扰乱了患者流动和获得高质量医疗服务的机会。因此,期望能够可靠地预测特定患者的住院时间长度的模型,以减轻延长的住院时间并指导个性化决策。然而,住院时间可能会受到多种因素的影响,并且可能会根据不同患者的病情和疾病进展而有所不同。大量临床数据的复杂性和动态性,更不用说医疗保健数据中存在大部分缺失和删失值,这对有效建模和动态预测提出了重大挑战。该项目旨在通过建立一个由先进的统计建模,监控和深度学习技术组成的管道,提供一个集成的解决方案,该管道基于随着时间的推移从异构医疗系统收集的患者信息。该项目的成功将促进从传统的标准驱动的放电调度服务到数据驱动的主动调度范式的转变。该项目的成功将减轻医院在资源分配方面的压力,改善病人流量,更重要的是,改善大流行的准备工作。该项目可以为来自不同背景(包括女性和代表性不足的少数民族)的健康信息学、统计学和人工智能领域的本科生和研究生提供基于研究的跨学科培训机会。该项目将解决医疗数据分析的关键挑战,即,异质性、多模态和数据稀疏性。传统的数据驱动方法主要集中在识别强烈影响住院时间的因素,而不是预测住院时间本身。此外,现有的方法未能解决固有的不确定性,并且无法整合不同的数据模式和动态预测。该项目提出了一个个性化的框架,通过集成先进的张量融合和时间到事件建模技术,实现智能患者流管理,最终可以更快地实现健康结果并降低住院费用。本文提出的智能框架将在以下几个方面推动实时数据融合和个性化预后的研究:(1)将数据融合和住院时间预测纳入统一的框架中:(2)实时地进行个性化的住院时间预测;(3)自然地具有将不确定性并入决策过程中以提供自信且智能的调度服务的能力。虽然该方法是为患者住院时间预测而提出的,但它不依赖于任何领域知识和特定疾病的限制性假设,因此可以潜在地应用于广泛的事件预测。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multi-modal learning for inpatient length of stay prediction
- DOI:10.1016/j.compbiomed.2024.108121
- 发表时间:2024-02-20
- 期刊:
- 影响因子:7.7
- 作者:Chen,Junde;Wen,Yuxin;Moen,Scott
- 通讯作者:Moen,Scott
A deep learning approach for inpatient length of stay and mortality prediction
- DOI:10.1016/j.jbi.2023.104526
- 发表时间:2023-10
- 期刊:
- 影响因子:4.5
- 作者:Junde Chen;Trudi Di Qi;Jacqueline Vu;Yuxin Wen
- 通讯作者:Junde Chen;Trudi Di Qi;Jacqueline Vu;Yuxin Wen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuxin Wen其他文献
Orthogonal Deep Neural Networks
正交深度神经网络
- DOI:
10.1109/tpami.2019.2948352 - 发表时间:
2019-05 - 期刊:
- 影响因子:23.6
- 作者:
Shuai Li;Kui Jia;Yuxin Wen;Tongliang Liu;Dacheng Tao - 通讯作者:
Dacheng Tao
Geometry-Aware Generation of Adversarial Point Clouds
- DOI:
0.1109/TPAMI.2020.3044712 - 发表时间:
2020 - 期刊:
- 影响因子:
- 作者:
Yuxin Wen;Jiehong Lin;Ke Chen;C. L. Philip Chen;Kui Jia - 通讯作者:
Kui Jia
Optimization for the extraction of polysaccharides from emHuidouba/em and their emin vitro/em α-glucosidase inhibition mechanism
- DOI:
10.1016/j.fbio.2022.101910 - 发表时间:
2022-10-01 - 期刊:
- 影响因子:5.900
- 作者:
Yuxin Wen;Xin Zhou;Da Huo;Juncheng Chen;Longmei Weng;Bing Li;Zhiqiang Wu;Xia Zhang;Lin Li - 通讯作者:
Lin Li
An Investigation into Using VR for Improving Public Speaking
使用 VR 改善公共演讲的调查
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yuxin Wen - 通讯作者:
Yuxin Wen
Potential solution to wheat straw-to-methanol for marine fuel under carbon emission restrictions: A comparative energy, exergy, economic, and environmental analysis
碳排放限制下小麦秸秆制甲醇作为船用燃料的潜在解决方案:能量、火用、经济和环境的比较分析
- DOI:
10.1016/j.apenergy.2025.126338 - 发表时间:
2025-11-01 - 期刊:
- 影响因子:11.000
- 作者:
Danfeng Wang;Yuxin Wen;Jie Zhang;Qianqian Chen;Yu Gu;Xinqing Chen;Zhiyong Tang - 通讯作者:
Zhiyong Tang
Yuxin Wen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于生物类芬顿的LA/Sch@BB耦合系统去除水产养殖尾水中抗生素的效果与机制研究
- 批准号:42377063
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
具有低聚合收缩和生态防龋双功能的埃洛石纳米管@SCH-79797改性复合树脂的研究
- 批准号:82170950
- 批准年份:2021
- 资助金额:52 万元
- 项目类别:面上项目
一类稳态Schödinger-Poisson-Slater方程标准化解的研究
- 批准号:11501137
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
锥中修改的Poisson-Sch积分在无穷远点处的渐近行为及其应用
- 批准号:U1304102
- 批准年份:2013
- 资助金额:30.0 万元
- 项目类别:联合基金项目
酵母中Sch9蛋白激酶信号途径调控衰老的分子机理
- 批准号:30671181
- 批准年份:2006
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
Open Access Block Award 2024 - London Sch of Hygiene & Tropic. Medicine
2024 年开放访问区块奖 - 伦敦卫生学院
- 批准号:
EP/Z532368/1 - 财政年份:2024
- 资助金额:
$ 17.44万 - 项目类别:
Research Grant
SCH: Dementia Early Detection for Under-represented Populations via Fair Multimodal Self-Supervised Learning
SCH:通过公平的多模式自我监督学习对代表性不足的人群进行痴呆症早期检测
- 批准号:
10816864 - 财政年份:2023
- 资助金额:
$ 17.44万 - 项目类别:
Collaborative Research: SCH: Improving Older Adults' Mobility and Gait Ability in Real-World Ambulation with a Smart Robotic Ankle-Foot Orthosis
合作研究:SCH:使用智能机器人踝足矫形器提高老年人在现实世界中的活动能力和步态能力
- 批准号:
2306660 - 财政年份:2023
- 资助金额:
$ 17.44万 - 项目类别:
Standard Grant
Collaborative Research: SCH: A wireless optoelectronic implant for closed-loop control of bi-hormone secretion from genetically modified islet organoid grafts
合作研究:SCH:一种无线光电植入物,用于闭环控制转基因胰岛类器官移植物的双激素分泌
- 批准号:
2306708 - 财政年份:2023
- 资助金额:
$ 17.44万 - 项目类别:
Standard Grant
Collaborative Research: SCH: AI-driven RFID Sensing for Smart Health Applications
合作研究:SCH:面向智能健康应用的人工智能驱动的 RFID 传感
- 批准号:
2306790 - 财政年份:2023
- 资助金额:
$ 17.44万 - 项目类别:
Standard Grant
SCH: Computer Vision Algorithms to Detect Tics In Patients with Tourette Syndrome
SCH:用于检测抽动秽语综合征患者抽动的计算机视觉算法
- 批准号:
10817272 - 财政年份:2023
- 资助金额:
$ 17.44万 - 项目类别:
SCH: A Novel Bias-mitigated Multimodal Oxygen Monitor
SCH:一种新型的消除偏差的多模式氧监测仪
- 批准号:
10816771 - 财政年份:2023
- 资助金额:
$ 17.44万 - 项目类别:
SCH: Artificial Intelligence enabled multi-modal sensor platform for at-home health monitoring of patients
SCH:人工智能支持的多模式传感器平台,用于患者的家庭健康监测
- 批准号:
10816667 - 财政年份:2023
- 资助金额:
$ 17.44万 - 项目类别:
CRII: SCH: Domain-guided Machine Learning for Clinical Decision Support in Epilepsy
CRII:SCH:用于癫痫临床决策支持的领域引导机器学习
- 批准号:
2344731 - 财政年份:2023
- 资助金额:
$ 17.44万 - 项目类别:
Standard Grant
SCH: Neonatal Facial Coding for Pain Recognition Monitoring System (PRAMS)
SCH:新生儿面部编码疼痛识别监测系统 (PRAMS)
- 批准号:
2205472 - 财政年份:2023
- 资助金额:
$ 17.44万 - 项目类别:
Standard Grant