CAREER: Fundamental Research in Geometric Folding

职业:几何折叠的基础研究

基本信息

  • 批准号:
    0347776
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-06-01 至 2011-05-31
  • 项目状态:
    已结题

项目摘要

ABSTRACTPROPOSAL: 0347776INSTITUTION: MITPRINCIPAL INVESTIGATOR: Demaine, Erik D.TITLE: CAREER: Fundamental Research in Geometric FoldingCAREER: Fundamental Research in Geometric FoldingFolding and unfolding is an emerging field of computational geometry studying the continuous motion and reconfiguration of geometric objects such as linkages, paper, and polyhedra and their physical manifestations such as proteins, packaging, and sheet metal. Folding problems arise in surprisingly many contexts, ranging from pure computational geometry to ad-hoc wireless networks to protein folding. This research aims to build a basic theory of geometric folding and, as this theory develops, to explore potential applications throughout science and engineering. Potential applications include air-bag design, space deployment, and drug design.This research addresses several fundamental unsolved problems in geometric folding. How can one efficiently compute motions that reconfigure a planar chain linkage between any two desired configurations? Do such motions always exist for 3D chain linkages whose edge lengths are all equal? Which configurations of proteins (viewed as a 3D chain linkage) can be biosynthesized by a ribosome? How efficiently can one-design proteins in the hydrophobic-hydrophilic model that fold stably into a desired shape? How efficiently can wireless beacons locate themselves in a global geometry given just local information about their neighbors? How efficiently can be design optimal foldings of paper into desired shapes? How many pieces must a polyhedron be cut into to unfold without overlap? In addition to solving problems such as these, the investigator is coauthoring a book about folding and is pursuing education of folding both as an interesting area in its own right and as a vehicle for presenting material in other areas.
摘要:提案:0347776机构:麻省理工学院主要研究者:Demaine, Erik d .标题:职业:几何折叠基础研究职业:几何折叠基础研究折叠和展开是计算几何的一个新兴领域,研究几何物体(如连杆、纸张和多面体)及其物理表现(如蛋白质、包装和金属板)的连续运动和重新配置。从纯计算几何到自组织无线网络再到蛋白质折叠,折叠问题出现在令人惊讶的许多环境中。本研究旨在建立几何折叠的基本理论,并随着该理论的发展,探索在科学和工程中的潜在应用。潜在的应用包括安全气囊设计、空间部署和药物设计。本研究解决了几何折叠中几个尚未解决的基本问题。如何有效地计算在任意两个期望构型之间重新配置平面链连杆的运动?对于边长相等的三维链环,是否总是存在这样的运动?核糖体可以生物合成哪些结构的蛋白质(视为3D链连接)?在亲水-疏水模型中,如何有效地设计出稳定折叠成所需形状的蛋白质?无线信标在给定其邻居的局部信息的情况下,如何有效地在全局几何结构中定位自己?如何有效地设计纸张的最佳折叠成所需的形状?一个多面体必须切成多少块才能展开而不重叠?除了解决这些问题外,研究者还与人合作撰写了一本关于折叠的书,并将折叠教育作为一个有趣的领域,同时作为展示其他领域材料的工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Erik Demaine其他文献

Multilayer tiles
多层瓷砖
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kota Chida;Erik Demaine;Martin Demaine;David Eppstein;Adam Hesterberg;Takashi Horiyama;John Iacono;Hiro Ito;Stefan Langerman;and Ryuhei Uehara
  • 通讯作者:
    and Ryuhei Uehara
Kernel Regression with Autocorrelation Prior
具有自相关先验的核回归
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Erik Demaine;Martin Demaine;Jin-ichi Itoh;Chie Nara;Akira Tanaka
  • 通讯作者:
    Akira Tanaka
Numerical Analysis Based on the Hyperfunction Theory
基于超函数理论的数值分析
Application of height theory to some modular algorithms in Symbolic Computation
高度理论在符号计算中模算法中的应用
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Erik Demaine;岡本吉央,上原隆平,宇野裕之;Rong Hu;Xavier Dahan;岡本 吉央;DAHAN Xavier;Rong Hu;DAHAN Xavier;並河 雄紀,岡本 吉央,大舘 陽太;Kirill Morozov;Xavier Dahan;Kirill Morozov;Sang Won Bae;Kirill Morozov;Naoya Yamanaka and Shin'ichi Oishi;Xavier Dahan
  • 通讯作者:
    Xavier Dahan
核モノクロメーターを用いた先進的放射光メスバウアー分光法の現状と展望
核单色仪先进同步加速器穆斯堡尔光谱研究现状与展望
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Erik Demaine;岡本吉央,上原隆平,宇野裕之;三井隆也
  • 通讯作者:
    三井隆也

Erik Demaine的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Erik Demaine', 18)}}的其他基金

Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
  • 批准号:
    2347321
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CCRI: Planning: Algorithmically Updating Repository of Reductions in Fine-Grained Complexity
CCRI:规划:通过算法更新减少细粒度复杂性的存储库
  • 批准号:
    1925583
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
BIGDATA: Collaborative Research: F: Making Big Data Accessible on Personal Devices: Big Network Algorithms, External Memory, and Data Streams
BIGDATA:协作研究:F:使大数据可在个人设备上访问:大网络算法、外部存储器和数据流
  • 批准号:
    1546290
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
AF: Medium: Collaborative Research: General Frameworks for Approximation and Fixed-Parameter Algorithms
AF:媒介:协作研究:近似和固定参数算法的通用框架
  • 批准号:
    1161626
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CDI-Type I: Geometric Algorithms for Staged Nanomanufacturing
CDI-I 型:用于分阶段纳米制造的几何算法
  • 批准号:
    0941312
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Workshop on Computational Geometry with a Focus on Open Problems
关注开放问题的计算几何研讨会
  • 批准号:
    0456026
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Research in Algorithmic Problems
算法问题研究
  • 批准号:
    0102015
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Fellowship Award

相似海外基金

CAREER: Smart Additive Manufacturing - Fundamental Research in Sensing, Data Science,and Modeling Toward Zero Part Defects.
职业:智能增材制造 - 传感、数据科学和零件零缺陷建模的基础研究。
  • 批准号:
    2309483
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Interactive Effects of Land Cover and Climate Change on Forest Carbon Sequestration: Integration of Research and Education to Advance Fundamental Science and Inclusivity
职业:土地覆盖和气候变化对森林碳固存的相互作用:研究和教育相结合,促进基础科学和包容性
  • 批准号:
    2145950
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Manufacturing Cofacially Aligned Nanolayered Architectures through Electrostatic Levitation: Fundamental Research with Integrated Education
职业:通过静电悬浮制造共面对齐的纳米层架构:基础研究与综合教育
  • 批准号:
    2146065
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Fundamental research on career formation and support for Japanese language teachers from the perspective of life career
终身职业视角下日语教师职业形成与支持的基础研究
  • 批准号:
    21K00622
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Smart Additive Manufacturing - Fundamental Research in Sensing, Data Science,and Modeling Toward Zero Part Defects.
职业:智能增材制造 - 传感、数据科学和零件零缺陷建模的基础研究。
  • 批准号:
    1752069
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Fundamental Research on a Novel Ultrasound-assisted Water-confined Laser Micromachining Technology
职业:新型超声辅助水约束激光微加工技术的基础研究
  • 批准号:
    1543865
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Fundamental Research on a Novel Ultrasound-assisted Water-confined Laser Micromachining Technology
职业:新型超声辅助水约束激光微加工技术的基础研究
  • 批准号:
    1055805
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Fundamental Research on Rotary Ultrasonic Machining of Dental Ceramic Materials
职业:牙科陶瓷材料旋转超声加工的基础研究
  • 批准号:
    0953502
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Fundamental Understanding of Mercury Cycling in Lakes and Use of Reservation-Based Research to Recruit American Indians into Environmental Engineering and Science
职业:对湖泊中汞循环的基本了解以及利用基于保留的研究招募美国印第安人进入环境工程和科学领域
  • 批准号:
    0846446
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Fundamental Research Leveraging Nanoparticle-Induced Crystallization in Semicrystalline Polymer Nanocomposites
职业:利用纳米颗粒诱导半晶聚合物纳米复合材料结晶的基础研究
  • 批准号:
    0846937
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了