CAREER: Visual Analysis of High-Dimensional Motion: A Distributed/Collaborative Approach
职业:高维运动的可视化分析:分布式/协作方法
基本信息
- 批准号:0347877
- 负责人:
- 金额:$ 47.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-02-01 至 2012-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is about analyzing high-dimensional motion (HDM) from video. HDM refers to various complex motions with high degrees of freedom, including the articulation of human body, the deformation of elastic shapes and the multi-motion of multiple occluding targets. The goal of this project is to overcome the curse of dimensionality embedded in this challenging visual inference problem, by systematically pursuing a new distributed/collaborative approach that unifies various HDMs. Substantially different from centralized methods, the new approach distributes HDM into a networked representation of subpart motions, based on Markov network models. Then the prohibitive HDM inference tasks can be effectively and efficiently fulfilled by the "collaborations" among the distributed but mutually constrained small-scale visual inference processes, as revealed by the proposed theoretical study of this model and implemented by the proposed collaborative particle network algorithms. This new approach is expected to be significantly more efficient, more scalable and flexible, and more robust. This project has impact on intelligent video surveillance by making possible fast and accurate human tracking and detection techniques, and significantly benefits the research of human-computer interaction and medical imaging.The research is linked to educational activities aiming at the promotion of learning and innovation through (1) developing an integrated curriculum for visual computing and statistical modeling; (2) motivating students to explore the unknown frontiers via innovative course projects and real-world applications; (3) outreaching to other related research communities via conferences and websites; (4) disseminating the research to the general public, female and minority students by creating Vision OpenHouse events.
这个项目是关于从视频中分析高维运动(HDM)。HDM是指人体的各种高自由度复杂运动,包括人体的关节运动、弹性物体的变形以及多个遮挡目标的多重运动。这个项目的目标是克服嵌入在这个具有挑战性的视觉推理问题的维数灾难,通过系统地追求一个新的分布式/协作的方法,统一各种HDM。与集中式方法有很大不同,新方法基于马尔可夫网络模型将HDM分布到子部件运动的网络表示中。然后,禁止HDM推理任务可以有效地和高效地完成的“协作”之间的分布式,但相互约束的小规模视觉推理过程,所揭示的提出的理论研究,该模型和所提出的协同粒子网络算法实现。这种新方法预计将大大提高效率,更具可扩展性和灵活性,并且更加强大。本项目通过快速准确的人体跟踪和检测技术对智能视频监控产生影响,并对人机交互和医学成像的研究产生重大影响。本研究与旨在促进学习和创新的教育活动相联系,通过(1)开发视觉计算和统计建模的综合课程;(2)通过创新的课程项目和现实世界的应用,激励学生探索未知的前沿;(3)通过会议和网站,与其他相关的研究团体联系;(4)通过创建Vision OpenHouse活动,向公众、女性和少数民族学生传播研究成果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ying Wu其他文献
Effects of perceptual complexity on older and younger adults’ target acquisition performance
知觉复杂性对老年人和年轻人目标获取表现的影响
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
M. Liao;Ying Wu;Ching - 通讯作者:
Ching
A Novel Poly(DL-lactic acid) Nanoparticle of Nitroxide Derivative, 4-Ferrocenecarboxyl-2,2,6,6-tetramethyl Piperidine-1-oxyl
氮氧化物衍生物4-二茂铁羧基-2,2,6,6-四甲基哌啶-1-氧基的新型聚DL-乳酸纳米粒子
- DOI:
10.1246/cl.2006.794 - 发表时间:
2006 - 期刊:
- 影响因子:1.6
- 作者:
Ying Wu;L. Miao;Hui;S. Zuo;Changming Ding;M. Lan - 通讯作者:
M. Lan
Knowledge, attitudes, and behaviors of nursing professionals and students in Beijing toward cardiovascular disease risk reduction.
北京市护理专业人员和学生对降低心血管疾病风险的知识、态度和行为。
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:2
- 作者:
Ying Wu;Ying Deng;Ying Zhang - 通讯作者:
Ying Zhang
Emerging role of estrogen receptor-α in bone formation and bone sparing.
雌激素受体-α 在骨形成和骨保护中的新作用。
- DOI:
10.1038/bonekey.2013.76 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
H. Ji;Qigang Dai;Hui Jin;Ke Xu;J. Ai;X. Fang;N. Shi;Haodi Huang;Ying Wu;Zhihang Peng;Jianli Hu;Liguo Zhu;Ming Wu;C. Bao - 通讯作者:
C. Bao
Joint Spatiotemporal Multipath Mitigation in Large-Scale Array Localization
大规模阵列定位中的联合时空多径缓解
- DOI:
10.1109/tsp.2018.2879625 - 发表时间:
2019-02 - 期刊:
- 影响因子:5.4
- 作者:
Yunlong Wang;Ying Wu;Yuan Shen - 通讯作者:
Yuan Shen
Ying Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ying Wu', 18)}}的其他基金
RI: Small: Visual Reasoning and Self-questioning for Explainable Visual Question Answering
RI:小:视觉推理和自我质疑以实现可解释的视觉问答
- 批准号:
2007613 - 财政年份:2020
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
RI: Small: A Unified Compositional Model for Explainable Video-based Human Activity Parsing
RI:小型:用于可解释的基于视频的人类活动解析的统一组合模型
- 批准号:
1815561 - 财政年份:2018
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
RI: Small: Modeling and Learning Visual Similarities Under Adverse Visual Conditions
RI:小:在不利视觉条件下建模和学习视觉相似性
- 批准号:
1619078 - 财政年份:2016
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
RI: Small: Mining and Learning Visual Contexts for Video Scene Understanding
RI:小:挖掘和学习视频场景理解的视觉上下文
- 批准号:
1217302 - 财政年份:2012
- 资助金额:
$ 47.5万 - 项目类别:
Continuing Grant
Collaborative Research: Sino-USA Summer School in Vision, Learning, Pattern Recognition VLPR 2010
合作研究:中美视觉、学习、模式识别暑期学校 VLPR 2010
- 批准号:
1037944 - 财政年份:2010
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
RI: Small: Computational Models of Context-awareness and Selective Attention for Persistent Visual Target Tracking
RI:小型:持续视觉目标跟踪的上下文感知和选择性注意的计算模型
- 批准号:
0916607 - 财政年份:2009
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
Transductive Learning for Retrieving and Mining Visual Contents
用于检索和挖掘视觉内容的转化学习
- 批准号:
0308222 - 财政年份:2003
- 资助金额:
$ 47.5万 - 项目类别:
Continuing Grant
相似国自然基金
基于多幅图象的Visual Hull重构及表面属性建模算法研究
- 批准号:60373031
- 批准年份:2003
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Visual analysis system to detect and predict the signs of anxiety in healthcare
用于检测和预测医疗保健中焦虑迹象的视觉分析系统
- 批准号:
2902083 - 财政年份:2024
- 资助金额:
$ 47.5万 - 项目类别:
Studentship
Functional analysis of an LGN-based visual prosthesis
基于 LGN 的视觉假体的功能分析
- 批准号:
10582766 - 财政年份:2023
- 资助金额:
$ 47.5万 - 项目类别:
Development of data generation and analysis methods for quantitative evaluation of visual search behavior in soccer
开发用于定量评估足球视觉搜索行为的数据生成和分析方法
- 批准号:
23K10626 - 财政年份:2023
- 资助金额:
$ 47.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a New Automatic Visual Acuity Testing Device Using Eye-Tracking Analysis for Infants
利用婴儿眼动追踪分析开发新型自动视力测试设备
- 批准号:
23K02275 - 财政年份:2023
- 资助金额:
$ 47.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: HCC: Medium: Modeling and Mitigating Confirmation Bias in Visual Data Analysis
合作研究:HCC:媒介:可视化数据分析中的建模和减轻确认偏差
- 批准号:
2311575 - 财政年份:2023
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
Investigation of the cause of computer elbow that occurs in visual display terminals workers using a three-dimensional motion analysis device
利用三维运动分析装置调查视觉显示终端工人电脑肘的原因
- 批准号:
23K03750 - 财政年份:2023
- 资助金额:
$ 47.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: HCC: Medium: Modeling and Mitigating Confirmation Bias in Visual Data Analysis
合作研究:HCC:媒介:可视化数据分析中的建模和减轻确认偏差
- 批准号:
2311574 - 财政年份:2023
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
Precise analysis of eye movement and development of vision training method for improving dynamic visual acuity
精准分析眼动并开发提高动态视力的视觉训练方法
- 批准号:
23K10668 - 财政年份:2023
- 资助金额:
$ 47.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Immersive Visual Analytics for Reservoir Characterization and Analysis
用于油藏表征和分析的沉浸式可视化分析
- 批准号:
534866-2019 - 财政年份:2022
- 资助金额:
$ 47.5万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Establishment of educational methods using visual perception patterns~Trajectory analysis of eye movement in learning evaluation~
利用视觉感知模式建立教育方法~学习评价中眼动轨迹分析~
- 批准号:
22K09975 - 财政年份:2022
- 资助金额:
$ 47.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)