Transductive Learning for Retrieving and Mining Visual Contents
用于检索和挖掘视觉内容的转化学习
基本信息
- 批准号:0308222
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-09-01 至 2008-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Contemporary visual learning methods for visual content mining tasks are plagued by several critical and fundamental challenges: (1) the unavailability of large annotated datasets prevents effective supervised learning; (2) the variability in different working environments challenges the generalization of inductive learning approaches; and (3) the high-dimensionality of these tasks confronts the efficiency of many existing learning techniques. The goal of this research project is to overcome these challenges by exploring a novel transductive learning approach.The approach provides a unified framework accommodating four subtasks: (1) transduction that integrates unlabelled and labeled data to alleviate the challenge of limited supervision and to enable automatic annotation propagation; (2) model transduction that automatically adapts a learned model to untrained environments for efficient model reuse; (3) co-transduction that facilitates transduction with multi-modalities to handle high-dimensionality in visual data; and (4) co-inference that exploits the interactions among multiple modalities to enable efficient model transduction.The research is linked to educational activities including the development of an integrated course of content-based visual data mining and the development of innovative course projects to engage students inresearch. The project disseminates research to other research communities through organizing workshops and tutorials, and to the general public, minority groups and woman students through creating Open House events.The results of this project will lead to significant improvement on the quality of content-based and object-level multimedia retrieval, will greatly benefit visual recognition that requires large datasets for training and evaluation, will significantly reduce the efforts of training brand new models for un-trained scenarios, and will be very useful in intelligent video surveillance applications thus having a great impact on homeland security. A website, http://www.ece.nwu.edu/~yingwu, contains research results, including demos, constructed benchmark datasets and software can be accessed.
视觉内容挖掘任务的当代视觉学习方法受到几个关键和根本性挑战的困扰:(1)大型注释数据集的不可用性阻碍了有效的监督学习;(2)不同工作环境中的可变性挑战归纳学习方法的推广;以及(3)这些任务的高维性面临许多现有学习技术的效率。本研究的目标是通过探索一种新的转换学习方法来克服这些挑战,该方法提供了一个统一的框架,包含四个子任务:(1)转换,将未标记和标记的数据整合在一起,以减轻有限监督的挑战,并实现自动注释传播;(2)模型转换,其自动地使学习的模型适应于未经训练的环境以用于有效的模型重用;(3)共转导,其促进多模态的转导以处理视觉数据中的高维性;以及(4)利用多种模态之间的相互作用来实现有效的模型转换的协同推理。该研究与教育活动相联系,包括开发内容-基于可视化数据挖掘和创新课程项目的开发,让学生参与研究。该项目通过组织研讨会和教程向其他研究团体传播研究成果,并通过创建开放日活动向公众、少数群体和女学生传播研究成果。该项目的结果将导致基于内容和对象级多媒体检索质量的显著提高,将大大有利于需要大量数据集进行训练和评估的视觉识别,将大大减少为未经训练的场景训练全新模型的工作,并将在智能视频监控应用中非常有用,从而对国土安全产生重大影响。一个网站http://www.ece.nwu.edu/zhiyingwu载有研究成果,包括演示、构建的基准数据集和软件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ying Wu其他文献
Highly nonclassical phonon emission statistics through two-phonon loss of van der Pol oscillator
通过范德波尔振荡器的双声子损失进行高度非经典声子发射统计
- DOI:
10.1063/5.0026286 - 发表时间:
2020 - 期刊:
- 影响因子:3.2
- 作者:
Jiahua Li;Chunling Ding;Ying Wu - 通讯作者:
Ying Wu
Joint Spatiotemporal Multipath Mitigation in Large-Scale Array Localization
大规模阵列定位中的联合时空多径缓解
- DOI:
10.1109/tsp.2018.2879625 - 发表时间:
2019-02 - 期刊:
- 影响因子:5.4
- 作者:
Yunlong Wang;Ying Wu;Yuan Shen - 通讯作者:
Yuan Shen
Highly Efficient Inverted Perovskite Solar Cells With Sulfonated Lignin Doped PEDOT as Hole Extract Layer
以磺化木质素掺杂 PEDOT 作为空穴提取层的高效倒置钙钛矿太阳能电池
- DOI:
10.1021/acsami.6b00084 - 发表时间:
2016 - 期刊:
- 影响因子:9.5
- 作者:
Ying Wu;Junyi Wang;Xueqing Qiu;Renqiang Yang;Hongming Lou;Xichang Bao;Yuan Li - 通讯作者:
Yuan Li
Improving photon antibunching with two dipole-coupled atoms in whispering-gallery-mode microresonators
利用回音壁模式微谐振器中的两个偶极耦合原子改善光子反聚束
- DOI:
10.1103/physreva.101.023810 - 发表时间:
2020-02 - 期刊:
- 影响因子:2.9
- 作者:
Ye Qu;Shuting Shen;Jiahua Li;Ying Wu - 通讯作者:
Ying Wu
Expression of recombinant human butyrylcholinesterase in the milk of transgenic mice
重组人丁酰胆碱酯酶在转基因小鼠乳汁中的表达
- DOI:
10.15302/j-fase-2014020 - 发表时间:
2014 - 期刊:
- 影响因子:3.7
- 作者:
D. Lu;Shengzhe Shang;Shen Liu;Ying Wu;Fangfang Wu;T. Tan;Qiuyan Li;Yunping Dai;Xiaoxiang Hu;Yaofeng Zhao;Ning Li - 通讯作者:
Ning Li
Ying Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ying Wu', 18)}}的其他基金
RI: Small: Visual Reasoning and Self-questioning for Explainable Visual Question Answering
RI:小:视觉推理和自我质疑以实现可解释的视觉问答
- 批准号:
2007613 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
RI: Small: A Unified Compositional Model for Explainable Video-based Human Activity Parsing
RI:小型:用于可解释的基于视频的人类活动解析的统一组合模型
- 批准号:
1815561 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
RI: Small: Modeling and Learning Visual Similarities Under Adverse Visual Conditions
RI:小:在不利视觉条件下建模和学习视觉相似性
- 批准号:
1619078 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant
RI: Small: Mining and Learning Visual Contexts for Video Scene Understanding
RI:小:挖掘和学习视频场景理解的视觉上下文
- 批准号:
1217302 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Sino-USA Summer School in Vision, Learning, Pattern Recognition VLPR 2010
合作研究:中美视觉、学习、模式识别暑期学校 VLPR 2010
- 批准号:
1037944 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
RI: Small: Computational Models of Context-awareness and Selective Attention for Persistent Visual Target Tracking
RI:小型:持续视觉目标跟踪的上下文感知和选择性注意的计算模型
- 批准号:
0916607 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Visual Analysis of High-Dimensional Motion: A Distributed/Collaborative Approach
职业:高维运动的可视化分析:分布式/协作方法
- 批准号:
0347877 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Understanding the Impact of Outdoor Science and Environmental Learning Experiences Through Community-Driven Outcomes
通过社区驱动的成果了解户外科学和环境学习体验的影响
- 批准号:
2314075 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Integrating Self-Regulated Learning Into STEM Courses: Maximizing Learning Outcomes With The Success Through Self-Regulated Learning Framework
将自我调节学习融入 STEM 课程:通过自我调节学习框架取得成功,最大化学习成果
- 批准号:
2337176 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Closing the Loop between Learning and Communication for Assistive Robot Arms
职业:关闭辅助机器人手臂的学习和交流之间的循环
- 批准号:
2337884 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Adaptive Deep Learning Systems Towards Edge Intelligence
职业:迈向边缘智能的自适应深度学习系统
- 批准号:
2338512 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
- 批准号:
2338749 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
- 批准号:
2327452 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
- 批准号:
2327473 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
- 批准号:
2409652 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant