CAREER: Default Bayesian Methods for Nonparametric Problems
职业:非参数问题的默认贝叶斯方法
基本信息
- 批准号:0349111
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-06-01 至 2010-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DEFAULT BAYESIAN METHODS FOR NONPARAMETRIC PROBLEMSStatistical models for complex data often contain one or moreinfinite-dimensional parameters such as a probability density, aregression function, or the transition density of a Markovprocess. The rapid development of innovative Monte-Carlo schemesin the last decade makes it possible to compute Bayesprocedures in these complex problems. However, because of the highdimensionality, it is seldom possible to completely elicit a priorsubjectively from the available information. What is needed is ageneral strategy for constructing priors for infinite-dimensionalparameters that incorporates available prior information, such assmoothness (differentiability) or shape (monotonicity, convexity,unimodality) of a regression function or density function.Ideally, the constructed prior should be tested in the givenproblem to avoid possible pitfalls in estimation. Large-sampleproperties such as consistency and rate of convergence arewell-respected benchmark test criteria. In this research theinvestigator constructs prior distributions for selectproblems using a default approach, devises suitable algorithms forcomputation of the posterior, develops software for computation,investigates the large sample behavior of the resulting procedures,supports the theory and methods via simulation studies withmoderately large samples, and applies the new methods to severalinteresting data sets. The research provides Bayesianmethodologists with a catalog of priors with known performanceproperties, thereby facilitating the application of Bayes methodsin other models with high-dimensional parameters.Modern statistical models for data in a wide variety ofapplications, such as data mining, image analysis, biometrics,biostatistics, bioinformatics, signal processing, and finance,often depend on high- or infinite-dimensional parameters such as survival distributions, probability densities, regressionfunctions, transition densities of Markov chains, and so on. Successfulanalysis of such data presents challenges not found in theanalysis of finite-parameter models, and requires the developmentof new statistical theory, methods and software. A non-subjective Bayesian method retains the advantages of the Bayesian paradigm without requiring a subjective prior elicitation. In thisresearch the investigator develops the theory, methods, andcomputational algorithms for implementing default Bayesian analyses ofcomplex statistical models depending on infinite-dimensionalparameters. The research is disseminated through the teachingof advanced courses and via the usual scientific channels ofpublications and seminars. The research provides newdata-analytic tools for solving problems arising in diverse fields. Useful priors with known performance are cataloged and user friendly software is developed for ready applications to diverse fields. Thus the research has a major impact on the conduct of science in a number of highly-relevantapplication areas.
用于非参数问题的缺省贝叶斯方法复杂数据的统计模型通常包含一个或多个有限维参数,如概率密度、回归函数或马尔可夫过程的转移密度。在过去的十年中,创新的蒙特卡罗方法的迅速发展使得计算这些复杂问题的贝叶斯过程成为可能。然而,由于高维性,很少可能从可用信息中完全主观地得出先验。需要一种通用的策略来构造无限维参数的先验,它包含了可用的先验信息,如回归函数或密度函数的分类(可微性)或形状(单调性、凸性、单峰性)。理想情况下,应在给定问题中检验所构造的先验,以避免估计中可能出现的陷阱。大样本属性,如一致性和收敛速度,是备受推崇的基准测试标准。在这项研究中,研究人员使用默认方法为选定问题构造先验分布,设计合适的后验计算算法,开发计算软件,研究结果程序的大样本行为,通过中等大样本的模拟研究来支持理论和方法,并将新方法应用于几个有趣的数据集。现代统计模型在数据挖掘、图像分析、生物统计学、生物统计学、生物信息学、信号处理、金融等领域的广泛应用中,往往依赖于高维或无限维马尔可夫链的生存分布、概率密度、回归函数、转移密度等参数。对这些数据的成功分析提出了在有限参数模型分析中找不到的挑战,需要开发新的统计理论、方法和软件。非主观贝叶斯方法保留了贝叶斯范式的优点,而不需要主观的先验启发。在这项研究中,研究人员发展了实现依赖于无限维参数的复杂统计模型的缺省贝叶斯分析的理论、方法和计算算法。这项研究通过教授高级课程以及通过出版物和研讨会等通常的科学渠道进行传播。这项研究为解决不同领域出现的问题提供了新的数据分析工具。具有已知性能的有用的前科被编目,用户友好的软件被开发出来,用于各种领域的现成应用。因此,这项研究对许多高度相关的应用领域的科学行为产生了重大影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Subhashis Ghoshal其他文献
Subhashis Ghoshal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Subhashis Ghoshal', 18)}}的其他基金
Collaborative Research: Novel modeling and Bayesian analysis of high-dimensional time series
合作研究:高维时间序列的新颖建模和贝叶斯分析
- 批准号:
2210280 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Optimal Bayesian Inference Under Shape Restrictions
形状限制下的最优贝叶斯推理
- 批准号:
1916419 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Bayesian estimation and uncertainty quantification for high dimensional data
高维数据的贝叶斯估计和不确定性量化
- 批准号:
1510238 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
10th Conference on Bayesian Nonparametrics
第十届贝叶斯非参数会议
- 批准号:
1507428 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
9th Conference on Bayesian Nonparametrics
第九届贝叶斯非参数会议
- 批准号:
1262034 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
2011 International Conference on Probability, Statistics and Data Analysis (2011-ICPSDA)
2011年概率、统计与数据分析国际会议(2011-ICPSDA)
- 批准号:
1105469 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Bayesian methods for structure detection in analysis of object data
对象数据分析中的结构检测贝叶斯方法
- 批准号:
1106570 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: Detecting false discoveries under dependence using mixtures
合作研究:使用混合物检测依赖性下的错误发现
- 批准号:
0803540 - 财政年份:2008
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似海外基金
Effects of exchange rate fluctuations on inflation and default risk
汇率波动对通胀和违约风险的影响
- 批准号:
23K01471 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Targeting the Default Mode Network: A TMS-fMRI Study
针对默认模式网络:TMS-fMRI 研究
- 批准号:
10590968 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
IoT Armor: An IoT Secure-by-Default Educational Toolkit
IoT Armor:物联网默认安全教育工具包
- 批准号:
10078019 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Collaborative R&D
IoT-Armor: An IoT Secure-by-Default Educational Toolkit
IoT-Armor:物联网默认安全教育工具包
- 批准号:
10100465 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Collaborative R&D
Default mode network dysfunction in Down Syndrome
唐氏综合症的默认模式网络功能障碍
- 批准号:
10635582 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Collaborative Research: Engaging Engineering Graduate Program Directors in Shifting the Default to Trauma-Informed Frameworks of Care
合作研究:让工程研究生项目主任将默认的护理框架转变为创伤知情的护理框架
- 批准号:
2147744 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Examining the electroencephalographic fingerprint of default mode network hyperconnectivity for scalable and personalized neurofeedback in schizophrenia
检查默认模式网络超连接的脑电图指纹,以实现精神分裂症的可扩展和个性化神经反馈
- 批准号:
10509002 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
An investigation of hierarchical predictive coding accounts of the default-network
默认网络的分层预测编码帐户的研究
- 批准号:
546863-2020 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Collaborative Research: Engaging Engineering Graduate Program Directors in Shifting the Default to Trauma-Informed Frameworks of Care
合作研究:让工程研究生项目主任将默认的护理框架转变为创伤知情的护理框架
- 批准号:
2147727 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Investigating electroencephalographic predictors of default mode network anticorrelation for personalized neurofeedback
研究个性化神经反馈的默认模式网络反相关的脑电图预测因子
- 批准号:
10447471 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别: