Optimal Bayesian Inference Under Shape Restrictions

形状限制下的最优贝叶斯推理

基本信息

  • 批准号:
    1916419
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

In many contexts of statistical modeling, the shape of a function used in modeling plays a key role. Prominent examples are increasing trend of the Arctic ice sheet melting and the rising sea levels under climate change. Many inverse problems such as deconvolution, or estimation under censoring also lead to shape restrictions on the concerned functions. While estimating these quantities and quantifying the uncertainty in their inference, such shape restrictions should be taken into consideration. Testing for an increasing trend or a similar shape restriction is also important for validating a theory leading to such a shape restriction. In this project, Bayesian methods, which combine prior information and observed data to make an inference, will be developed in the context of shape-restricted models. The results will be applied in various fields of interest. The proposed research, apart from developing new ideas, methods and computational techniques for answering related mathematical questions, will provide a significant impact on making decisions in various application such as climate change, tumor size monitoring, and censored data. Research findings will be disseminated through arXiv preprints, journal publications, talks in conferences and various institutions, and through special topics courses. The software will be developed and distributed for free through CRAN and PI's website. The PI is highly committed to doctoral student advising and promoting diversity, especially from women and underrepresented groups. Twenty-six doctoral students already graduated and four are currently working with him. The PI's NSF grants also supported his doctoral students to travel to conferences. The PI also has the track record of promoting the representation of women and minorities through the conference support grants he obtained. In total 21 female researchers and 4 from under-represented groups and many young U.S. participants were supported. The PI will continue promoting diversity in research related to this proposal. The graduate student support will be used on shape-restricted inference research and on writing computer codes for the resulting formulae. Shape restricted inference has been studied well from the maximum likelihood perspective, but Bayesian methods have been less developed. In the Bayesian approach, additional information in the form of the qualitative shape restriction may be naturally blended in the prior. Uncertainty in the concerned functions can be quantified by Bayesian credible regions, which are relatively easy to obtain from posterior sampling. The frequentist coverage of such sets is important to know. In this proposal, a new computationally advantageous Bayesian approach based on a ``projection posterior'' will be adopted, which will also be easier to analyze theoretically. Suitable priors for shape restricted inference such as those obtained from step functions and B-splines series will be developed for both univariate and multivariate shape restrictions, and the projection posterior will be studied. Local and global posterior contraction rates will be established. Asymptotic frequentist coverage of Bayesian credible intervals for a regression or density function at a point under monotonicity or other shape constraints will be obtained. A recalibration step will be used to adjust the coverage to meet a targeted value. Asymptotically optimal and computationally advantageous Bayesian tests for shape restrictions will be developed. Results will be extended to other types of univariate shape restrictions like convexity or log-concavity and to multivariate monotonicity and convexity settings in regression, density estimation, and survival analysis. The methods developed will be applied in diverse contexts including climate change and medical data. The proposed research may open up a completely new path for the Bayesian approach in shape-restricted inference and reconcile Bayesian and frequentist uncertainty quantification under shape restriction and may serve as a seed for further development in the years to come.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在统计建模的许多上下文中,建模中使用的函数的形状起着关键作用。突出的例子是气候变化导致北极冰盖融化和海平面上升的趋势。许多反问题,如反卷积,或估计下的删失也导致有关的功能的形状限制。在估计这些量并量化其推断中的不确定性时,应考虑此类形状限制。测试增加的趋势或类似的形状限制对于验证导致这种形状限制的理论也很重要。在这个项目中,贝叶斯方法,结合联合收割机先验信息和观测数据进行推理,将在形状限制模型的背景下发展。其结果将应用于各种感兴趣的领域。除了开发新的想法,方法和计算技术来回答相关的数学问题外,拟议的研究还将对气候变化,肿瘤大小监测和审查数据等各种应用中的决策产生重大影响。研究结果将通过arXiv预印本、期刊出版物、会议和各种机构的讲座以及专题课程传播。该软件将通过CRAN和PI的网站免费开发和分发。PI高度致力于博士生咨询和促进多样性,特别是来自妇女和代表性不足的群体。26名博士生已经毕业,4名目前正在与他一起工作。PI的NSF赠款还支持他的博士生前往会议。PI还通过他获得的会议支助赠款促进妇女和少数群体的代表性。总共有21名女性研究人员和4名来自代表性不足的群体和许多年轻的美国参与者得到了支持。PI将继续促进与本提案相关的研究的多样性。研究生的支持将用于形状限制推理研究和编写计算机代码的公式。 形状限制推理已经从最大似然的角度得到了很好的研究,但贝叶斯方法发展较少。在贝叶斯方法中,定性形状限制形式的附加信息可以自然地混合在先验中。有关函数的不确定性可以用贝叶斯可信域来量化,这是相对容易获得的后验抽样。知道这些集合的频率论覆盖率是很重要的。在该提案中,将采用一种新的基于"投影后验"的计算上有利的贝叶斯方法,这也将更容易进行理论分析。合适的先验形状限制推理,如从步骤函数和B-样条系列将开发为单变量和多变量的形状限制,投影后验将进行研究。将建立局部和全局后验收缩率。在单调性或其他形状约束下,将获得回归或密度函数在一点处的贝叶斯可信区间的渐近频率论覆盖。 将使用重新校准步骤来调整覆盖范围,以满足目标值。渐近最佳和计算上有利的贝叶斯测试的形状限制将被开发。结果将扩展到其他类型的单变量形状限制,如凸性或对数,以及回归,密度估计和生存分析中的多变量单调性和凸性设置。开发的方法将应用于不同的背景,包括气候变化和医疗数据。拟议的研究可能会开辟一个全新的路径贝叶斯方法在形状限制的推理和调和贝叶斯和频率论的不确定性量化下的形状限制,并可能作为一个种子,为进一步发展在未来几年。这个奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rates and coverage for monotone densities using projection-posterior
使用后投影的单调密度的速率和覆盖范围
  • DOI:
    10.3150/21-bej1379
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Chakraborty, Moumita;Ghosal, Subhashis
  • 通讯作者:
    Ghosal, Subhashis
Coverage of credible intervals in Bayesian multivariate isotonic regression
贝叶斯多元等渗回归中可信区间的覆盖范围
  • DOI:
    10.1214/23-aos2298
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wang, Kang;Ghosal, Subhashis
  • 通讯作者:
    Ghosal, Subhashis
Convergence rates for Bayesian estimation and testing in monotone regression
单调回归中贝叶斯估计和测试的收敛率
  • DOI:
    10.1214/21-ejs1861
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Chakraborty, Moumita;Ghosal, Subhashis
  • 通讯作者:
    Ghosal, Subhashis
Posterior contraction and testing for multivariate isotonic regression
后收缩和多元等渗回归测试
  • DOI:
    10.1214/23-ejs2115
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Wang, Kang;Ghosal, Subhashis
  • 通讯作者:
    Ghosal, Subhashis
Coverage of credible intervals in nonparametric monotone regression
非参数单调回归中可信区间的覆盖
  • DOI:
    10.1214/20-aos1989
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chakraborty, Moumita;Ghosal, Subhashis
  • 通讯作者:
    Ghosal, Subhashis
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Subhashis Ghoshal其他文献

Subhashis Ghoshal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Subhashis Ghoshal', 18)}}的其他基金

Collaborative Research: Novel modeling and Bayesian analysis of high-dimensional time series
合作研究:高维时间序列的新颖建模和贝叶斯分析
  • 批准号:
    2210280
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Bayesian estimation and uncertainty quantification for high dimensional data
高维数据的贝叶斯估计和不确定性量化
  • 批准号:
    1510238
  • 财政年份:
    2015
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
10th Conference on Bayesian Nonparametrics
第十届贝叶斯非参数会议
  • 批准号:
    1507428
  • 财政年份:
    2015
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
9th Conference on Bayesian Nonparametrics
第九届贝叶斯非参数会议
  • 批准号:
    1262034
  • 财政年份:
    2013
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
2011 International Conference on Probability, Statistics and Data Analysis (2011-ICPSDA)
2011年概率、统计与数据分析国际会议(2011-ICPSDA)
  • 批准号:
    1105469
  • 财政年份:
    2011
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Bayesian methods for structure detection in analysis of object data
对象数据分析中的结构检测贝叶斯方法
  • 批准号:
    1106570
  • 财政年份:
    2011
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: Detecting false discoveries under dependence using mixtures
合作研究:使用混合物检测依赖性下的错误发现
  • 批准号:
    0803540
  • 财政年份:
    2008
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CAREER: Default Bayesian Methods for Nonparametric Problems
职业:非参数问题的默认贝叶斯方法
  • 批准号:
    0349111
  • 财政年份:
    2004
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant

相似国自然基金

多元纵向数据与复发事件和终止事件的Bayesian联合模型研究
  • 批准号:
    82173628
  • 批准年份:
    2021
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
三维地质模型约束下地球化学场的Bayesian-MCMC推断
  • 批准号:
    42072326
  • 批准年份:
    2020
  • 资助金额:
    63 万元
  • 项目类别:
    面上项目
基于Bayesian Kriging模型的压射机构稳健优化设计基础研究
  • 批准号:
    51875209
  • 批准年份:
    2018
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
X射线图像分析中的MCMC-Bayesian理论与计算方法研究
  • 批准号:
    U1830105
  • 批准年份:
    2018
  • 资助金额:
    62.0 万元
  • 项目类别:
    联合基金项目
基于Bayesian位移场的SAR图像精确配准方法研究
  • 批准号:
    41601345
  • 批准年份:
    2016
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
多结局Bayesian联合生存模型及糖尿病并发症预测研究
  • 批准号:
    81673274
  • 批准年份:
    2016
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
基于Meta流行病学和Bayesian方法构建针刺干预无偏倚风险效果评价体系研究
  • 批准号:
    81403276
  • 批准年份:
    2014
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
BtoC电子商务中基于分层Bayesian网络的信任与声誉计算理论研究
  • 批准号:
    71302080
  • 批准年份:
    2013
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于Bayesian网络的坚硬顶板条件下煤与瓦斯突出预警控制机理研究
  • 批准号:
    51274089
  • 批准年份:
    2012
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目
Bayesian实物期权及在信用风险决策中的应用
  • 批准号:
    71071027
  • 批准年份:
    2010
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

MPhil/PhD Statistics (Assessing inequality in the Criminal Justice System using novel causal inference methods and Bayesian spatial models)
硕士/博士统计学(使用新颖的因果推理方法和贝叶斯空间模型评估刑事司法系统中的不平等)
  • 批准号:
    2905812
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Studentship
Pooling INference and COmbining Distributions Exactly: A Bayesian approach (PINCODE)
准确地汇集推理和组合分布:贝叶斯方法 (PINCODE)
  • 批准号:
    EP/X027872/1
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Grant
Pooling INference and COmbining Distributions Exactly: A Bayesian Approach (PINCODE)
池化推理和精确组合分布:贝叶斯方法 (PINCODE)
  • 批准号:
    EP/X028100/1
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Grant
EAGER: Robust Data-Driven Robotic Manipulation via Bayesian Inference and Passivity-Based Control
EAGER:通过贝叶斯推理和基于被动的控制进行稳健的数据驱动机器人操作
  • 批准号:
    2330794
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Pooling INference and COmbining Distributions Exactly: A Bayesian Approach PINCODE
池化推理和精确组合分布:贝叶斯方法 PINCODE
  • 批准号:
    EP/X028712/1
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Grant
Bayesian Modeling and Inference for High-Dimensional Disease Mapping and Boundary Detection"
用于高维疾病绘图和边界检测的贝叶斯建模和推理”
  • 批准号:
    10568797
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
Bayesian inference of the mode of speciation and gene flow using genomic data
使用基因组数据对物种形成和基因流模式进行贝叶斯推断
  • 批准号:
    BB/X007553/1
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Grant
Bayesian Inference of Whole-Brain Directed Networks Using Neuroimaging Data
使用神经影像数据进行全脑定向网络的贝叶斯推理
  • 批准号:
    2242568
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Inform Shared Decision-making with Advanced Bayesian Causal Inference to Improve Quality of Pediatric Rheumatology Care
通过高级贝叶斯因果推理为共享决策提供信息,以提高儿科风湿病护理的质量
  • 批准号:
    10646649
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
Investigation and deployment of novel Bayesian inference algorithms in CAVATICA for identifying genomic variants underlying congenital heart defects in Down syndrome individuals
在 CAVATICA 中研究和部署新型贝叶斯推理算法,用于识别唐氏综合症个体先天性心脏缺陷的基因组变异
  • 批准号:
    10658217
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了