Collaborative Research: FRG: Applications of Multiple Dirichlet Series to Analytic Number Theory
合作研究:FRG:多重狄利克雷级数在解析数论中的应用
基本信息
- 批准号:0353964
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-07-15 至 2008-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract for Collaborative FRG proposals DMS- 0354534, DMS -0353964, DMS-0354662 and DMS-0354582 of Hoffstein, Bump Friedberg and GoldfeldThe object of this proposal is to continue todevelop the theory of multiple Dirichlet seriesalong a number of highly promising directions.These include the formulation of aclassification theory via Dynkin diagrams andmetaplectic forms, analysis of naturalconstructions as inner products of automorphic forms on GL(n),and investigating examples coming fromEisenstein series related to deformation theoryof universal elliptic curves. Manyapplications are expected to the analysis of various familiesof L-functions The theory of L-functions of one complex variable iscentral in modern number theory. Special values ofL-functions have provided links between such diverseareas of mathematics as algebraic geometry, topology,probability and statistics, the representation theory ofinfinite dimensional Lie groups, and mathematicalphysics. In contrast, the theory of L-functions ofseveral complex variables (multipleDirichlet series) is still in its infancy. A large part of thefoundational theory was developedby the PI's and Postdocs of this proposal, who havebeen collaborating in teams, over thelast twenty years. The accumulated scientific results,combined with a mass sustained joint effort of thePI's, now point to the possibility of major breakthroughs.There is also an additionaltraining component. Workshops will be held each yearas well as short courses aimed at attracting graduate students, postdocs, andmathematicians in related fields. The motivationwill be to categorize and advertisethe major accessible problems in the field, tomap out progress made, and to prepare theparticipants for research projects.
Hoffstein, Bump Friedberg和goldfeld的协作FRG提案DMS- 0354534, DMS- 0353964, DMS-0354662和DMS-0354582。该提案的目的是沿着一些非常有前途的方向继续发展多重Dirichlet级数理论。这些包括通过Dynkin图和元塑形式的分类理论的表述,作为GL(n)上自同构形式的内积的自然结构的分析,以及与通用椭圆曲线变形理论相关的梅森斯坦级数的例子的研究。一元复变的l -函数理论是现代数论的核心。l函数的特殊值为代数几何、拓扑学、概率论和统计学、有限维李群的表示理论和数学物理等不同数学领域提供了联系。相比之下,复数变量的l函数理论(多重狄利克雷级数)仍处于起步阶段。基础理论的很大一部分是由该提案的PI和博士后在过去20年里以团队合作的方式发展起来的。积累的科学成果,加上pi的大规模持续共同努力,现在表明有可能取得重大突破。还有一个额外的培训部分。每年将举办研讨会和短期课程,旨在吸引相关领域的研究生、博士后和数学家。其动机将是对该领域的主要问题进行分类和宣传,绘制出取得的进展,并为研究项目的参与者做好准备。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Solomon Friedberg其他文献
Publisher Correction to: The generalized doubling method: local theory
- DOI:
10.1007/s00039-022-00622-7 - 发表时间:
2022-11-29 - 期刊:
- 影响因子:2.500
- 作者:
Yuanqing Cai;Solomon Friedberg;Eyal Kaplan - 通讯作者:
Eyal Kaplan
On maass wave forms and the imaginary quadratic Doi-Naganuma lifting
- DOI:
10.1007/bf01457056 - 发表时间:
1983-12-01 - 期刊:
- 影响因子:1.400
- 作者:
Solomon Friedberg - 通讯作者:
Solomon Friedberg
Représentations génériques du groupe unitaire à trois variables
三个变量的统一组通用表示
- DOI:
10.1016/s0764-4442(00)88562-6 - 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Solomon Friedberg;Stephen S. Gelbart;Hervé Jacquet;Jonathan Rogawski - 通讯作者:
Jonathan Rogawski
On the cubic Shimura lift for PGL3
- DOI:
10.1007/bf02784158 - 发表时间:
2001-12-01 - 期刊:
- 影响因子:0.800
- 作者:
Daniel Bump;Solomon Friedberg;David Ginzburg - 通讯作者:
David Ginzburg
On the Shimura correspondence forGSp(4)
- DOI:
10.1007/bf01459242 - 发表时间:
1991-03-01 - 期刊:
- 影响因子:1.400
- 作者:
Solomon Friedberg;Shek-Tung Wong - 通讯作者:
Shek-Tung Wong
Solomon Friedberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Solomon Friedberg', 18)}}的其他基金
Conference: Solvable Lattice Models, Number Theory and Combinatorics
会议:可解格子模型、数论和组合学
- 批准号:
2401464 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Automorphic Forms on Reductive Groups and Their Covers
还原群上的自守形式及其覆盖
- 批准号:
2100206 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Metaplectic Eisenstein series, crystal graphs, and quantum groups
Metaplectic Eisenstein 系列、晶体图和量子群
- 批准号:
1001326 - 财政年份:2010
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Combinatorial representation theory, multiple Dirichlet series and moments of L-functions
FRG:协作研究:组合表示理论、多重狄利克雷级数和 L 函数矩
- 批准号:
0652609 - 财政年份:2007
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Automorphic L-functions and Sums of Automorphic L-functions
自同构 L 函数和自同构 L 函数之和
- 批准号:
9970118 - 财政年份:1999
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Mathematical Sciences: Sums of L-functions, the Metaplectic Group, and Non-Generic Representations
数学科学:L 函数之和、元波群和非泛型表示
- 批准号:
9896186 - 财政年份:1998
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Mathematical Sciences: Sums of L-functions, the Metaplectic Group, and Non-Generic Representations
数学科学:L 函数之和、元波群和非泛型表示
- 批准号:
9531957 - 财政年份:1996
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Mathematical Sciences: Eisenstein Series on the Metaplectic Group
数学科学:爱森斯坦Metaplectic群系列
- 批准号:
8821762 - 财政年份:1989
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant