Automorphic Forms and L-Functions
自守形式和 L 函数
基本信息
- 批准号:1801497
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project concerns number theory. It focuses on automorphic forms---functions that are invariant under a large discrete group of symmetries. When the order of applying the symmetries does not matter, such functions may be studied by Fourier analysis, discovered in the nineteenth century; however, for more complicated symmetries new ideas are needed and our knowledge is far from complete. The fundamental Langlands Functoriality Conjectures predict that highly symmetric functions are the keys to understanding solutions to polynomial equations, making a bridge between the continuous (functions) and the discrete (solutions). A specific case of the conjectures played a key role in Wiles's proof of Fermat's Conjecture, but most cases of the Langlands Conjectures are still unproved. This project will provide new information about automorphic forms, including functoriality, and about quantities in number theory and in other areas of mathematics related to automorphic forms.In more detail, this project includes problems related to functoriality, L-functions, and covering groups. In one series of problems, the principal investigator proposes to give applications of, and to generalize, a new recent construction, the twisted doubling integral, which makes it possible to analyze L-functions for non-generic automorphic forms. A second series of problems concerns automorphic forms on general covering groups, the metaplectic groups. The principal investigator proposes to give broad examples of the principle that constructions involving automorphic forms on linear groups (or the double covers described by Weil) can be extended to general covering groups. A third set of problems concerns new constructions involving automorphic forms, representation theory, and number theory, including the study of functionals on p-adic groups related to Iwahori-Hecke algebras and quantum groups. This research will advance our knowledge of automorphic forms on reductive groups and their covers, with consequences for number theory, representation theory, and string theory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个研究项目是关于数论的。它集中在自守形式-函数是不变的下一个大的离散群的对称性。 当应用对称性的顺序无关紧要时,这种函数可以用世纪发现的傅立叶分析来研究;然而,对于更复杂的对称性,需要新的思想,我们的知识还远远不够。基本的朗兰兹功能性猜想预测,高度对称的函数是理解多项式方程解的关键,在连续(函数)和离散(解)之间架起了一座桥梁。在怀尔斯证明费马猜想的过程中,一个特殊的朗兰兹猜想起了关键作用,但朗兰兹猜想的大多数情况仍然没有得到证明。这个项目将提供关于自守形式的新信息,包括函性,数论中的量以及与自守形式相关的其他数学领域。更详细地说,这个项目包括与函性,L-函数和覆盖群相关的问题。在一系列的问题,主要研究者提出的应用程序,并推广,一个新的最近建设,扭曲倍积分,这使得有可能分析L-函数的非一般自守形式。第二个系列的问题涉及一般覆盖群的自守形式,即元群。主要研究者建议给出广泛的例子的原则,建设涉及自守形式的线性群(或双覆盖所描述的韦尔)可以扩展到一般覆盖群。第三组问题涉及新的建设,涉及自守形式,表示论和数论,包括研究泛函的p-adic群有关岩堀-赫克代数和量子群。这项研究将推进我们对约化群及其覆盖的自守形式的了解,并对数论、表示论和弦理论产生影响。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值进行评估而被认为值得支持。和更广泛的影响审查标准。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Classical Theta Lifts for Higher Metaplectic Covering Groups
用于更高 Metaplectic 覆盖组的经典 Theta 提升
- DOI:10.1007/s00039-020-00548-y
- 发表时间:2020
- 期刊:
- 影响因子:2.2
- 作者:Friedberg, Solomon;Ginzburg, David
- 通讯作者:Ginzburg, David
Doubling constructions and tensor product L-functions: the linear case
- DOI:10.1007/s00222-019-00883-4
- 发表时间:2017-10
- 期刊:
- 影响因子:3.1
- 作者:Yuanqing Cai;S. Friedberg;D. Ginzburg;Eyal Kaplan
- 通讯作者:Yuanqing Cai;S. Friedberg;D. Ginzburg;Eyal Kaplan
Dimensions of automorphic representations, L-functions and liftings
自守表示、L 函数和提升的维数
- DOI:10.1007/978-3-030-68506-5_3
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Friedberg, Solomon;Ginzburg, David
- 通讯作者:Ginzburg, David
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Solomon Friedberg其他文献
Publisher Correction to: The generalized doubling method: local theory
- DOI:
10.1007/s00039-022-00622-7 - 发表时间:
2022-11-29 - 期刊:
- 影响因子:2.500
- 作者:
Yuanqing Cai;Solomon Friedberg;Eyal Kaplan - 通讯作者:
Eyal Kaplan
On maass wave forms and the imaginary quadratic Doi-Naganuma lifting
- DOI:
10.1007/bf01457056 - 发表时间:
1983-12-01 - 期刊:
- 影响因子:1.400
- 作者:
Solomon Friedberg - 通讯作者:
Solomon Friedberg
Représentations génériques du groupe unitaire à trois variables
三个变量的统一组通用表示
- DOI:
10.1016/s0764-4442(00)88562-6 - 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Solomon Friedberg;Stephen S. Gelbart;Hervé Jacquet;Jonathan Rogawski - 通讯作者:
Jonathan Rogawski
On the cubic Shimura lift for PGL3
- DOI:
10.1007/bf02784158 - 发表时间:
2001-12-01 - 期刊:
- 影响因子:0.800
- 作者:
Daniel Bump;Solomon Friedberg;David Ginzburg - 通讯作者:
David Ginzburg
On the Shimura correspondence forGSp(4)
- DOI:
10.1007/bf01459242 - 发表时间:
1991-03-01 - 期刊:
- 影响因子:1.400
- 作者:
Solomon Friedberg;Shek-Tung Wong - 通讯作者:
Shek-Tung Wong
Solomon Friedberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Solomon Friedberg', 18)}}的其他基金
Conference: Solvable Lattice Models, Number Theory and Combinatorics
会议:可解格子模型、数论和组合学
- 批准号:
2401464 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Automorphic Forms on Reductive Groups and Their Covers
还原群上的自守形式及其覆盖
- 批准号:
2100206 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
Metaplectic Eisenstein series, crystal graphs, and quantum groups
Metaplectic Eisenstein 系列、晶体图和量子群
- 批准号:
1001326 - 财政年份:2010
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Combinatorial representation theory, multiple Dirichlet series and moments of L-functions
FRG:协作研究:组合表示理论、多重狄利克雷级数和 L 函数矩
- 批准号:
0652609 - 财政年份:2007
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: FRG: Applications of Multiple Dirichlet Series to Analytic Number Theory
合作研究:FRG:多重狄利克雷级数在解析数论中的应用
- 批准号:
0353964 - 财政年份:2004
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
Automorphic L-functions and Sums of Automorphic L-functions
自同构 L 函数和自同构 L 函数之和
- 批准号:
9970118 - 财政年份:1999
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Sums of L-functions, the Metaplectic Group, and Non-Generic Representations
数学科学:L 函数之和、元波群和非泛型表示
- 批准号:
9896186 - 财政年份:1998
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Sums of L-functions, the Metaplectic Group, and Non-Generic Representations
数学科学:L 函数之和、元波群和非泛型表示
- 批准号:
9531957 - 财政年份:1996
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Eisenstein Series on the Metaplectic Group
数学科学:爱森斯坦Metaplectic群系列
- 批准号:
8821762 - 财政年份:1989
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
相似海外基金
Conference: International Conference on L-functions and Automorphic Forms
会议:L-函数和自同构国际会议
- 批准号:
2349888 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
L-Functions and Automorphic Forms: Algebraic and p-adic Aspects
L 函数和自守形式:代数和 p 进方面
- 批准号:
2302011 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Connections Between L-functions and String Theory via Differential Equations in Automorphic Forms
通过自守形式微分方程连接 L 函数和弦理论
- 批准号:
2302309 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Analytic problems around automorphic forms and L-functions
围绕自守形式和 L 函数的分析问题
- 批准号:
2302210 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
The study of Whittaker functions for degenerate characters and their application to the global theory of automorphic forms
简并特征Whittaker函数的研究及其在自守形式全局理论中的应用
- 批准号:
23K03079 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analytic Theory of Automorphic Forms and L-Functions
自守形式和 L 函数的解析理论
- 批准号:
2344044 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Relations between prehomogeneous zeta functions and automorphic forms
前齐次 zeta 函数与自同构形式之间的关系
- 批准号:
22K03251 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
L-functions of automorphic forms and their variants
自守形式的 L 函数及其变体
- 批准号:
2599753 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Studentship
Automorphic forms on higher rank groups: Fourier coefficients, L-functions, and arithmetic
高阶群上的自守形式:傅立叶系数、L 函数和算术
- 批准号:
EP/T028343/1 - 财政年份:2020
- 资助金额:
$ 17.5万 - 项目类别:
Research Grant
Analytic Theory of Automorphic Forms and L-Functions
自守形式和 L 函数的解析理论
- 批准号:
2001183 - 财政年份:2020
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant