Automorphic Forms on Reductive Groups and Their Covers
还原群上的自守形式及其覆盖
基本信息
- 批准号:2100206
- 负责人:
- 金额:$ 30.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project studies functions arising in number theory that exhibit special symmetry properties under transformations, called automorphic forms. Some of these functions have coefficients that encode important information in arithmetic, and some have recently been connected to aspects of string theory in physics. The fundamental Langlands Functoriality Conjectures predict subtle relations between different spaces of automorphic forms, a structure that is closely related to many questions in number theory and analysis. This research project focuses on establishing properties of automorphic forms and new connections between different spaces of automorphic forms. The project will also support a graduate student and allow the PI and his students to disseminate the work through conferences and seminars.This project treats automorphic forms and representations on reductive groups and on their metaplectic covers of arbitrary degree. Automorphic forms on reductive groups are the key ingredients of the Langlands Program, and automorphic forms on covers are closely tied to reciprocity laws and related to the congruence subgroup problem. The research focuses on correspondences and on L-functions. In one series of projects, the principal investigator will develop and study new theta correspondences that generalize the classical theta correspondence but involve the tensor product of two small representations. A second project seeks to give a new Shimura correspondence that is detected by a period involving a theta function on an orthogonal group. This will be established by means of a new relative trace formula. A third set of projects concerns the systematic development of integral representations for L-functions which make use of the residual spectrum. These projects will advance our knowledge of automorphic forms, both on reductive groups and on finite degree covers, our understanding of small automorphic representations, and our understanding of the relations between automorphic forms on different groups. It will advance our knowledge of number theory and of representation theory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本研究项目研究数论中出现的函数,这些函数在变换下表现出特殊的对称性,称为自守形式。其中一些函数的系数在算术中编码了重要信息,还有一些最近与物理学中的弦理论有关。 基本的朗兰兹功能性猜想预言了自守形式的不同空间之间的微妙关系,这种结构与数论和分析中的许多问题密切相关。 这个研究项目的重点是建立自守形式的性质和自守形式的不同空间之间的新连接。 该项目还将支持一名研究生,并允许PI和他的学生通过会议和研讨会传播工作。该项目将自守形式和表示约化群及其任意度的元复盖。约化群上的自守形式是朗兰兹纲领的关键组成部分,覆盖上的自守形式与互反律密切相关,并与同余子群问题有关。研究的重点是对应关系和L-函数。在一系列项目中,主要研究者将开发和研究新的theta对应,这些对应概括了经典的theta对应,但涉及两个小表示的张量积。 第二个项目旨在提供一个新的志村对应关系,这是检测到的一个时期,涉及一个正交组上的θ函数。这将通过一个新的相对迹公式来建立。第三套项目涉及系统的发展,利用剩余频谱的L-函数的积分表示。这些项目将推进我们的知识自守形式,无论是在约化群和有限度覆盖,我们的理解小自守表示,我们的理解自守形式之间的关系,对不同的群体。 该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The generalized doubling method: local theory
广义倍增法:局部理论
- DOI:10.1007/s00039-022-00609-4
- 发表时间:2022
- 期刊:
- 影响因子:2.2
- 作者:Cai, Yuanqing;Friedberg, Solomon;Kaplan, Eyal
- 通讯作者:Kaplan, Eyal
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Solomon Friedberg其他文献
Publisher Correction to: The generalized doubling method: local theory
- DOI:
10.1007/s00039-022-00622-7 - 发表时间:
2022-11-29 - 期刊:
- 影响因子:2.500
- 作者:
Yuanqing Cai;Solomon Friedberg;Eyal Kaplan - 通讯作者:
Eyal Kaplan
On maass wave forms and the imaginary quadratic Doi-Naganuma lifting
- DOI:
10.1007/bf01457056 - 发表时间:
1983-12-01 - 期刊:
- 影响因子:1.400
- 作者:
Solomon Friedberg - 通讯作者:
Solomon Friedberg
Représentations génériques du groupe unitaire à trois variables
三个变量的统一组通用表示
- DOI:
10.1016/s0764-4442(00)88562-6 - 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Solomon Friedberg;Stephen S. Gelbart;Hervé Jacquet;Jonathan Rogawski - 通讯作者:
Jonathan Rogawski
On the cubic Shimura lift for PGL3
- DOI:
10.1007/bf02784158 - 发表时间:
2001-12-01 - 期刊:
- 影响因子:0.800
- 作者:
Daniel Bump;Solomon Friedberg;David Ginzburg - 通讯作者:
David Ginzburg
On the Shimura correspondence forGSp(4)
- DOI:
10.1007/bf01459242 - 发表时间:
1991-03-01 - 期刊:
- 影响因子:1.400
- 作者:
Solomon Friedberg;Shek-Tung Wong - 通讯作者:
Shek-Tung Wong
Solomon Friedberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Solomon Friedberg', 18)}}的其他基金
Conference: Solvable Lattice Models, Number Theory and Combinatorics
会议:可解格子模型、数论和组合学
- 批准号:
2401464 - 财政年份:2024
- 资助金额:
$ 30.9万 - 项目类别:
Standard Grant
Metaplectic Eisenstein series, crystal graphs, and quantum groups
Metaplectic Eisenstein 系列、晶体图和量子群
- 批准号:
1001326 - 财政年份:2010
- 资助金额:
$ 30.9万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Combinatorial representation theory, multiple Dirichlet series and moments of L-functions
FRG:协作研究:组合表示理论、多重狄利克雷级数和 L 函数矩
- 批准号:
0652609 - 财政年份:2007
- 资助金额:
$ 30.9万 - 项目类别:
Standard Grant
Collaborative Research: FRG: Applications of Multiple Dirichlet Series to Analytic Number Theory
合作研究:FRG:多重狄利克雷级数在解析数论中的应用
- 批准号:
0353964 - 财政年份:2004
- 资助金额:
$ 30.9万 - 项目类别:
Continuing Grant
Automorphic L-functions and Sums of Automorphic L-functions
自同构 L 函数和自同构 L 函数之和
- 批准号:
9970118 - 财政年份:1999
- 资助金额:
$ 30.9万 - 项目类别:
Standard Grant
Mathematical Sciences: Sums of L-functions, the Metaplectic Group, and Non-Generic Representations
数学科学:L 函数之和、元波群和非泛型表示
- 批准号:
9896186 - 财政年份:1998
- 资助金额:
$ 30.9万 - 项目类别:
Continuing Grant
Mathematical Sciences: Sums of L-functions, the Metaplectic Group, and Non-Generic Representations
数学科学:L 函数之和、元波群和非泛型表示
- 批准号:
9531957 - 财政年份:1996
- 资助金额:
$ 30.9万 - 项目类别:
Continuing Grant
Mathematical Sciences: Eisenstein Series on the Metaplectic Group
数学科学:爱森斯坦Metaplectic群系列
- 批准号:
8821762 - 财政年份:1989
- 资助金额:
$ 30.9万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Quantifying congruences between modular forms
职业:量化模块化形式之间的同余性
- 批准号:
2337830 - 财政年份:2024
- 资助金额:
$ 30.9万 - 项目类别:
Continuing Grant
Conference: Modular forms, L-functions, and Eigenvarieties
会议:模形式、L 函数和特征变量
- 批准号:
2401152 - 财政年份:2024
- 资助金额:
$ 30.9万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
- 批准号:
2347096 - 财政年份:2024
- 资助金额:
$ 30.9万 - 项目类别:
Standard Grant
Conference: International Conference on L-functions and Automorphic Forms
会议:L-函数和自同构国际会议
- 批准号:
2349888 - 财政年份:2024
- 资助金额:
$ 30.9万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
- 批准号:
2347095 - 财政年份:2024
- 资助金额:
$ 30.9万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
- 批准号:
2347097 - 财政年份:2024
- 资助金额:
$ 30.9万 - 项目类别:
Standard Grant
Automorphic Forms and the Langlands Program
自守形式和朗兰兹纲领
- 批准号:
2401353 - 财政年份:2024
- 资助金额:
$ 30.9万 - 项目类别:
Continuing Grant
Topics in automorphic Forms and Algebraic Cycles
自守形式和代数循环主题
- 批准号:
2401548 - 财政年份:2024
- 资助金额:
$ 30.9万 - 项目类别:
Continuing Grant
Conference: Workshop on Automorphic Forms and Related Topics
会议:自守形式及相关主题研讨会
- 批准号:
2401444 - 财政年份:2024
- 资助金额:
$ 30.9万 - 项目类别:
Standard Grant
Development of a food bolus formation ability evaluation system to support the selection of appropriate food forms.
开发食物团形成能力评估系统以支持选择合适的食物形式。
- 批准号:
23K09279 - 财政年份:2023
- 资助金额:
$ 30.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)