FRG: Collaborative Research: The Four-Color Theorem and Beyond

FRG:协作研究:四色定理及其他

基本信息

  • 批准号:
    0354742
  • 负责人:
  • 金额:
    $ 20.83万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-07-01 至 2008-06-30
  • 项目状态:
    已结题

项目摘要

ABSTRACT for FRG award DMS-035472, DMS-0354465 and DMS-0354554 of Thomas, Seymour and RobertsonWe propose to study the four-colour problem and its extensions. The four-colour problemitself was proposed as a conjecture in the the mid-19th century, and remained open forover 120 years, until it was settled by Appel and Haken in 1977. That period coincidedwith the birth of graph theory as a serious subject, and graph theory grew up aroundthe various attempts to settle the four-colour problem. The problem lives right at theheart of modern graph theory, and still is not properly understood.In particular, the proof by Appel and Haken used a computer, and for a mathematiciantrying to understand what makes a result true, this is not acceptable; it may beconvincing evidence that the result is true, but it is not helpful for understanding.We already found our own proof (joint with Sanders), and our proof is simpler and more easily checked than the Appel-Haken proof, but it too uses a computer. We plan to redesign the proof to reduce the dependence on computers as far as we can.There are a number of proposed extensions of the four-colour theorem, mostly still open.For instance, there is Hadwiger's conjecture of 1943 that every graph that cannot be coloured with k colours can be contracted to a complete graph on k+1 vertices. For k = 1,2,3this is easy, and when k = 4 this is equivalent to the four-colour problem; and we proved thatit is also true for k = 5. We would like to extend this to higher values of k.There are a number of other extensions of the four-colour problem, detailed in the proposal itself; for instance Tutte's 4-flow conjecture, the odd minor conjecture, and Grotsch's conjecture.
对于Thomas, Seymour和robertson的FRG奖DMS-035472, DMS-0354465和DMS-0354554,我们提出研究四色问题及其扩展。四色问题本身是在19世纪中期作为一个猜想提出的,并且一直存在了120多年,直到1977年由Appel和Haken解决。那个时期与图论作为一门严肃学科的诞生相吻合,图论是围绕解决四色问题的各种尝试而发展起来的。这个问题是现代图论的核心,但仍然没有得到正确的理解。特别是,阿佩尔和哈肯的证明使用了计算机,对于一个试图理解是什么使结果为真的数学家来说,这是不可接受的;它可能成为结果是真实的令人信服的证据,但它对理解没有帮助。我们已经找到了自己的证明(与Sanders联合),我们的证明比apple - haken证明更简单,更容易检查,但它也使用了计算机。我们计划重新设计证明,以尽可能减少对计算机的依赖。有许多关于四色定理的扩展,大多数仍然是开放的。例如,1943年的Hadwiger猜想,每个不能用k种颜色着色的图都可以缩并成一个有k+1个顶点的完全图。对于k = 1,2,3,这很简单,当k = 4时,这等同于四色问题;我们证明了k = 5时也是成立的。我们希望将其扩展到k的更高值。四色问题还有许多其他的扩展,在提案本身中详细说明;比如Tutte的四流猜想,奇次猜想,还有Grotsch的猜想。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robin Thomas其他文献

Packing cycles in undirected group-labelled graphs
  • DOI:
    10.1016/j.jctb.2023.02.011
  • 发表时间:
    2023-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Robin Thomas;Youngho Yoo
  • 通讯作者:
    Youngho Yoo
Progress on perfect graphs
  • DOI:
    10.1007/s10107-003-0449-8
  • 发表时间:
    2003-07-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Maria Chudnovsky;Neil Robertson;P. D. Seymour;Robin Thomas
  • 通讯作者:
    Robin Thomas
Properties of 8-contraction-critical graphs with no math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e176" altimg="si7.svg" class="math"msubmrowmiK/mi/mrowmrowmn7/mn/mrow/msub/math minor
没有数学的 8 收缩关键图的性质
  • DOI:
    10.1016/j.ejc.2023.103711
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Martin Rolek;Zi-Xia Song;Robin Thomas
  • 通讯作者:
    Robin Thomas
Be Alert to ALERD: Acute Leukoencephalopathy with Restricted Diffusion—Atypical Presentation of a Rare Case
警惕警报:弥散受限的急性白质脑病——罕见病例的非典型表现
  • DOI:
    10.1055/s-0043-1778100
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0.2
  • 作者:
    Neena Baby;Sachin Ajith;Lovena Mohammed;Robin Thomas;Anil Kumar Divakar;Poornima Prabhu;Sureshkumar Radhakrishnan
  • 通讯作者:
    Sureshkumar Radhakrishnan
Odd <em>K</em><sub>3,3</sub> subdivisions in bipartite graphs
  • DOI:
    10.1016/j.jctb.2016.01.005
  • 发表时间:
    2016-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Robin Thomas;Peter Whalen
  • 通讯作者:
    Peter Whalen

Robin Thomas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robin Thomas', 18)}}的其他基金

Graph Structure Theory and Applications to Algorithms
图结构理论及其在算法中的应用
  • 批准号:
    1202640
  • 财政年份:
    2012
  • 资助金额:
    $ 20.83万
  • 项目类别:
    Continuing Grant
Support for the 2011 Annual Meeting of the Society for Mathematical Psychology
支持数学心理学会2011年年会
  • 批准号:
    1119022
  • 财政年份:
    2011
  • 资助金额:
    $ 20.83万
  • 项目类别:
    Standard Grant
MRI-R2: Acquisition of Dense Array EEG for Research and Training across the Disciplines
MRI-R2:获取密集阵列脑电图用于跨学科研究和培训
  • 批准号:
    0958874
  • 财政年份:
    2010
  • 资助金额:
    $ 20.83万
  • 项目类别:
    Standard Grant
Support for the 2010 Annual Meeting of the Society for Mathematical Psychology
支持数学心理学会2010年年会
  • 批准号:
    1021089
  • 财政年份:
    2010
  • 资助金额:
    $ 20.83万
  • 项目类别:
    Standard Grant
New Directions in Algorithms, Combinatorics and Optimization
算法、组合学和优化的新方向
  • 批准号:
    0802740
  • 财政年份:
    2008
  • 资助金额:
    $ 20.83万
  • 项目类别:
    Standard Grant
Graph Structure, Coloring, Flows and Algorithms
图结构、着色、流程和算法
  • 批准号:
    0701077
  • 财政年份:
    2007
  • 资助金额:
    $ 20.83万
  • 项目类别:
    Continuing Grant
Adapting Systems Factorial Technology to Model Selection:Applications to Perception and Classification
将系统因子技术应用于模型选择:在感知和分类中的应用
  • 批准号:
    0544688
  • 财政年份:
    2006
  • 资助金额:
    $ 20.83万
  • 项目类别:
    Standard Grant
Characterization and Recognition of Perfect Graphs
完美图的表征和识别
  • 批准号:
    0200595
  • 财政年份:
    2002
  • 资助金额:
    $ 20.83万
  • 项目类别:
    Continuing Grant
Research in Structural Graph Theory
结构图论研究
  • 批准号:
    9970514
  • 财政年份:
    1999
  • 资助金额:
    $ 20.83万
  • 项目类别:
    Continuing Grant
U.S.-France Cooperative Research: Digraph Minors
美法合作研究:有向图未成年人
  • 批准号:
    9603321
  • 财政年份:
    1997
  • 资助金额:
    $ 20.83万
  • 项目类别:
    Standard Grant

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 20.83万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 20.83万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 20.83万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 20.83万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 20.83万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    $ 20.83万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    $ 20.83万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    $ 20.83万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245097
  • 财政年份:
    2023
  • 资助金额:
    $ 20.83万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245147
  • 财政年份:
    2023
  • 资助金额:
    $ 20.83万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了