Graph Structure Theory and Applications to Algorithms
图结构理论及其在算法中的应用
基本信息
- 批准号:1202640
- 负责人:
- 金额:$ 58.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-06-01 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The central theme of this proposal is graph structure theory and its applications to algorithms. More specifically, the PI will investigate the structure of graphs pertaining to the graph minor inclusion and its much less understood counterpart for directed graphs. Recent work of the PI suggests that it should be possible to obtain much improved bounds in key results of the Graph Minors theory. Such improved bounds will have immediate applications to the design of efficient algorithms. For directed graphs the main questions are whether the so-called cylindrical grid conjecture is true, and whether the algorithms for digraphs of bounded tree-width that are currently known can be improved to become fixed parameter tractable. The cylindrical grid conjecture seems to be both a fundamental mathematical problem as well as one that could potentially unlock many algorithmic applications. The PI also proposes a new approach to attacking Negami's planar cover conjecture, a problem from 1988 that has received a considerable amount of attention. The original motivation came from computer science, the idea being that if a graph G covers a graph H, then the connections of H can be simulated by G, and yet G could potentially have a simpler structure. Negami's conjecture would characterize graphs that have a planar cover.This work falls within the area of graph theory, and is closely related to theoretical computer science and mathematical programming (operations research). A graph is an abstract mathematical notion used to model networks, such as telephone networks, transportation networks or the Internet. Various problems arise in the study of such networks, and this proposal is concerned with problems of structural nature. Why do some networks possess certain specific desirable properties, and others do not? A satisfactory answer can have many applications, ranging from better understanding of the underlying structure, to the design of efficient algorithms, to practical computations. For instance, one such question answered earlier by the PI settles a question of Georgia Polya from 1913, it also solves a different problem that baffled theoretical computer scientists for quarter of a century, and has applications in economics.
这个提议的中心主题是图结构理论及其在算法中的应用。 更具体地说,PI将研究与图的子包含有关的图的结构,以及它在有向图中较少被理解的对应部分。 PI最近的工作表明,应该可以在图次项理论的关键结果中获得更好的边界。 这种改进的界限将直接应用于设计有效的算法。 对于有向图的主要问题是所谓的圆柱形网格猜想是否正确,以及目前已知的有界树宽有向图的算法是否可以改进为固定参数易处理。 圆柱网格猜想似乎既是一个基本的数学问题,也是一个可能解开许多算法应用的问题。 PI还提出了一种新的方法来攻击Negami的平面覆盖猜想,这个问题从1988年开始就受到了相当多的关注。 最初的动机来自计算机科学,其想法是,如果图G覆盖图H,那么H的连接可以由G模拟,但G可能具有更简单的结构。Negami猜想刻画了具有平面覆盖的图的特征。这项工作福尔斯属于图论领域,与理论计算机科学和数学规划(运筹学)密切相关。图是一个抽象的数学概念,用于对网络进行建模,例如电话网络,交通网络或互联网。在研究这种网络的过程中会出现各种问题,而本建议关注的是结构性问题。 为什么有些网络具有某些特定的理想属性,而另一些则没有?一个令人满意的答案可以有许多应用,从更好地理解底层结构,到设计有效的算法,再到实际计算。 例如,PI早些时候回答的一个这样的问题解决了1913年的格鲁吉亚波利亚问题,它还解决了一个困扰理论计算机科学家四分之一个世纪的不同问题,并在经济学中有应用。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cyclically five-connected cubic graphs
循环五连通立方图
- DOI:10.1016/j.jctb.2017.03.003
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Robertson, Neil;Seymour, P.D.;Thomas, Robin
- 通讯作者:Thomas, Robin
Non-embeddable extensions of embedded minors
嵌入式未成年人的不可嵌入式扩展
- DOI:10.1016/j.jctb.2018.01.004
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Hegde, Rajneesh;Thomas, Robin
- 通讯作者:Thomas, Robin
A new proof of the flat wall theorem
平壁定理的新证明
- DOI:10.1016/j.jctb.2017.09.006
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Kawarabayashi, Ken-ichi;Thomas, Robin;Wollan, Paul
- 通讯作者:Wollan, Paul
K 6 minors in large 6-connected graphs
大 6 连通图中的 K 6 个次要
- DOI:10.1016/j.jctb.2017.09.007
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Kawarabayashi, Ken-ichi;Norine, Serguei;Thomas, Robin;Wollan, Paul
- 通讯作者:Wollan, Paul
K 6 minors in 6-connected graphs of bounded tree-width
有界树宽的 6 连通图中的 K 6 个次要
- DOI:10.1016/j.jctb.2017.08.006
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Kawarabayashi, Ken-ichi;Norine, Serguei;Thomas, Robin;Wollan, Paul
- 通讯作者:Wollan, Paul
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robin Thomas其他文献
Packing cycles in undirected group-labelled graphs
- DOI:
10.1016/j.jctb.2023.02.011 - 发表时间:
2023-07-01 - 期刊:
- 影响因子:
- 作者:
Robin Thomas;Youngho Yoo - 通讯作者:
Youngho Yoo
Progress on perfect graphs
- DOI:
10.1007/s10107-003-0449-8 - 发表时间:
2003-07-01 - 期刊:
- 影响因子:2.500
- 作者:
Maria Chudnovsky;Neil Robertson;P. D. Seymour;Robin Thomas - 通讯作者:
Robin Thomas
Properties of 8-contraction-critical graphs with no math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e176" altimg="si7.svg" class="math"msubmrowmiK/mi/mrowmrowmn7/mn/mrow/msub/math minor
没有数学的 8 收缩关键图的性质
- DOI:
10.1016/j.ejc.2023.103711 - 发表时间:
2023-05-01 - 期刊:
- 影响因子:0.900
- 作者:
Martin Rolek;Zi-Xia Song;Robin Thomas - 通讯作者:
Robin Thomas
Be Alert to ALERD: Acute Leukoencephalopathy with Restricted Diffusion—Atypical Presentation of a Rare Case
警惕警报:弥散受限的急性白质脑病——罕见病例的非典型表现
- DOI:
10.1055/s-0043-1778100 - 发表时间:
2023 - 期刊:
- 影响因子:0.2
- 作者:
Neena Baby;Sachin Ajith;Lovena Mohammed;Robin Thomas;Anil Kumar Divakar;Poornima Prabhu;Sureshkumar Radhakrishnan - 通讯作者:
Sureshkumar Radhakrishnan
Odd <em>K</em><sub>3,3</sub> subdivisions in bipartite graphs
- DOI:
10.1016/j.jctb.2016.01.005 - 发表时间:
2016-05-01 - 期刊:
- 影响因子:
- 作者:
Robin Thomas;Peter Whalen - 通讯作者:
Peter Whalen
Robin Thomas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robin Thomas', 18)}}的其他基金
Support for the 2011 Annual Meeting of the Society for Mathematical Psychology
支持数学心理学会2011年年会
- 批准号:
1119022 - 财政年份:2011
- 资助金额:
$ 58.5万 - 项目类别:
Standard Grant
MRI-R2: Acquisition of Dense Array EEG for Research and Training across the Disciplines
MRI-R2:获取密集阵列脑电图用于跨学科研究和培训
- 批准号:
0958874 - 财政年份:2010
- 资助金额:
$ 58.5万 - 项目类别:
Standard Grant
Support for the 2010 Annual Meeting of the Society for Mathematical Psychology
支持数学心理学会2010年年会
- 批准号:
1021089 - 财政年份:2010
- 资助金额:
$ 58.5万 - 项目类别:
Standard Grant
New Directions in Algorithms, Combinatorics and Optimization
算法、组合学和优化的新方向
- 批准号:
0802740 - 财政年份:2008
- 资助金额:
$ 58.5万 - 项目类别:
Standard Grant
Graph Structure, Coloring, Flows and Algorithms
图结构、着色、流程和算法
- 批准号:
0701077 - 财政年份:2007
- 资助金额:
$ 58.5万 - 项目类别:
Continuing Grant
Adapting Systems Factorial Technology to Model Selection:Applications to Perception and Classification
将系统因子技术应用于模型选择:在感知和分类中的应用
- 批准号:
0544688 - 财政年份:2006
- 资助金额:
$ 58.5万 - 项目类别:
Standard Grant
FRG: Collaborative Research: The Four-Color Theorem and Beyond
FRG:协作研究:四色定理及其他
- 批准号:
0354742 - 财政年份:2004
- 资助金额:
$ 58.5万 - 项目类别:
Standard Grant
Characterization and Recognition of Perfect Graphs
完美图的表征和识别
- 批准号:
0200595 - 财政年份:2002
- 资助金额:
$ 58.5万 - 项目类别:
Continuing Grant
U.S.-France Cooperative Research: Digraph Minors
美法合作研究:有向图未成年人
- 批准号:
9603321 - 财政年份:1997
- 资助金额:
$ 58.5万 - 项目类别:
Standard Grant
相似海外基金
Theory design and implementation of practical optimization and enumeration algorithms over graph structure
图结构实用优化和枚举算法的理论设计与实现
- 批准号:
20K11691 - 财政年份:2020
- 资助金额:
$ 58.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on computational learning theory of formal graph systems by graph structure distribution
基于图结构分布的形式图系统计算学习理论研究
- 批准号:
17K00321 - 财政年份:2017
- 资助金额:
$ 58.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Graph Structure Theory in Compiler Construction
编译器构建中的图结构理论
- 批准号:
389550275 - 财政年份:2017
- 资助金额:
$ 58.5万 - 项目类别:
Research Grants
CAREER: CDS&E: Quantifying & Designing Grain Boundary Network Structure via Spectral Graph Theory
职业:CDS
- 批准号:
1654700 - 财政年份:2017
- 资助金额:
$ 58.5万 - 项目类别:
Continuing Grant
Structure theory for permutation groups and local graph theory conjectures
置换群的结构理论和局部图论猜想
- 批准号:
DE160100081 - 财政年份:2016
- 资助金额:
$ 58.5万 - 项目类别:
Discovery Early Career Researcher Award
Research on Discrete Structure and Algorithms by using Spectral Graph Theory
利用谱图理论研究离散结构与算法
- 批准号:
15K20885 - 财政年份:2015
- 资助金额:
$ 58.5万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Comprehensive analysis of human brain network structure based on graph theory using brain MRI
基于图论的脑MRI综合分析人脑网络结构
- 批准号:
23240056 - 财政年份:2011
- 资助金额:
$ 58.5万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Advances in Graph and Matroid Structure Theory
图和拟阵结构理论的进展
- 批准号:
0302221 - 财政年份:2003
- 资助金额:
$ 58.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Graph Minor Structure Theory
数学科学:图小结构理论
- 批准号:
9401981 - 财政年份:1994
- 资助金额:
$ 58.5万 - 项目类别:
Continuing grant