Graph Structure, Coloring, Flows and Algorithms
图结构、着色、流程和算法
基本信息
- 批准号:0701077
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-01 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The central theme of this proposal is graph structure theory and its applications to coloring, flows and algorithms. More specifically, the principal investigator studies the structure of graphs pertaining to the graph minor inclusion and its relatives, such as the directed minor and matching minor relations, and uses those results to attack flow and coloring problems, as well as the problem of characterizing ``Pfaffian graphs". Pfaffian graphs are of interest because they allow efficient computation of perfect matchings, and their rich theory is related to other areas. This research requires the development of new tools in graph structure theory.In particular, the PI proposes an in-depth study of the notion of ``society", originally introduced by Robertson and Seymour.Applications of the theory range from theoretical (the flow conjectures, the double cycle conjecture) to more algorithmic (coloring graphs on surfaces and graphs belonging to a proper minor-closed family).An important method employed in the proof of the Four-Color Theorem is the technique of ``reducibility". While it is essential for the proof, there is almost no associated theory. The PI attempts to develop such a theory for the Four-Color Theorem, for the 5-Flow Conjecture and for the Cycle Double Cover Conjecture. A successful theory of reducibility (if it exists) will hopefully lead to a computer-free proof of the Four-Color Theorem and to proofs of the 5-Flow and Cycle Double Cover Conjectures.This work falls within the area of graph theory, and is closely related to theoretical computer science and mathematical programming (operations research). A graph is an abstract mathematical notion used to model networks, such as telephone networks, transportation networks or the Internet. Various problems arise in the study of such networks, and this proposal is concerned with problems of structural nature. Why do some networks possess certain specific desirable properties, and others do not? A satisfactory answer can have many applications, ranging from better understanding of the undelying structure, to the design of efficient algorithms, to practical computations. For instance, one such question answered earlier by the PI settles a question of Georgia Polya from 1913, it also solves a different problem that baffled theoretical computer scientists for quarter of a century, and has applications in economics.
该提案的中心主题是图结构理论及其在着色、流和算法中的应用。更具体地说,主要研究者研究了与图的未成年人包含及其亲属有关的图的结构,例如定向未成年人和匹配未成年人关系,并使用这些结果来攻击流和着色问题,以及表征“Pfiran图”的问题。普夫图之所以令人感兴趣,是因为它们允许完美匹配的有效计算,并且它们丰富的理论与其他领域有关。这项研究需要在图结构理论中开发新的工具。特别是,PI提出了对最初由Robertson和Seymour引入的“社会”概念的深入研究。该理论的应用范围从理论到实践,(流动图,双循环猜想),(曲面上的着色图和真次闭族图)四色定理证明中的一个重要方法是“约化”技术。虽然这是必不可少的证明,但几乎没有相关的理论。PI试图为四色定理、5流猜想和循环双覆盖猜想发展这样的理论。一个成功的归约理论(如果存在的话)将有望导致四色定理的无计算机证明和5-流和循环双覆盖猜想的证明。这项工作福尔斯图论领域,与理论计算机科学和数学规划(运筹学)密切相关。图是一个抽象的数学概念,用于对网络进行建模,例如电话网络,交通网络或互联网。在研究这种网络的过程中会出现各种问题,而本建议关注的是结构性问题。为什么有些网络具有某些特定的理想属性,而另一些则没有?一个令人满意的答案可以有许多应用,从更好地理解undelying结构,到设计有效的算法,再到实际计算。例如,PI早些时候回答的一个这样的问题解决了1913年的格鲁吉亚波利亚问题,它还解决了一个困扰理论计算机科学家四分之一个世纪的不同问题,并在经济学中有应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robin Thomas其他文献
Packing cycles in undirected group-labelled graphs
- DOI:
10.1016/j.jctb.2023.02.011 - 发表时间:
2023-07-01 - 期刊:
- 影响因子:
- 作者:
Robin Thomas;Youngho Yoo - 通讯作者:
Youngho Yoo
Progress on perfect graphs
- DOI:
10.1007/s10107-003-0449-8 - 发表时间:
2003-07-01 - 期刊:
- 影响因子:2.500
- 作者:
Maria Chudnovsky;Neil Robertson;P. D. Seymour;Robin Thomas - 通讯作者:
Robin Thomas
Properties of 8-contraction-critical graphs with no math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e176" altimg="si7.svg" class="math"msubmrowmiK/mi/mrowmrowmn7/mn/mrow/msub/math minor
没有数学的 8 收缩关键图的性质
- DOI:
10.1016/j.ejc.2023.103711 - 发表时间:
2023-05-01 - 期刊:
- 影响因子:0.900
- 作者:
Martin Rolek;Zi-Xia Song;Robin Thomas - 通讯作者:
Robin Thomas
Be Alert to ALERD: Acute Leukoencephalopathy with Restricted Diffusion—Atypical Presentation of a Rare Case
警惕警报:弥散受限的急性白质脑病——罕见病例的非典型表现
- DOI:
10.1055/s-0043-1778100 - 发表时间:
2023 - 期刊:
- 影响因子:0.2
- 作者:
Neena Baby;Sachin Ajith;Lovena Mohammed;Robin Thomas;Anil Kumar Divakar;Poornima Prabhu;Sureshkumar Radhakrishnan - 通讯作者:
Sureshkumar Radhakrishnan
Odd <em>K</em><sub>3,3</sub> subdivisions in bipartite graphs
- DOI:
10.1016/j.jctb.2016.01.005 - 发表时间:
2016-05-01 - 期刊:
- 影响因子:
- 作者:
Robin Thomas;Peter Whalen - 通讯作者:
Peter Whalen
Robin Thomas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robin Thomas', 18)}}的其他基金
Graph Structure Theory and Applications to Algorithms
图结构理论及其在算法中的应用
- 批准号:
1202640 - 财政年份:2012
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Support for the 2011 Annual Meeting of the Society for Mathematical Psychology
支持数学心理学会2011年年会
- 批准号:
1119022 - 财政年份:2011
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
MRI-R2: Acquisition of Dense Array EEG for Research and Training across the Disciplines
MRI-R2:获取密集阵列脑电图用于跨学科研究和培训
- 批准号:
0958874 - 财政年份:2010
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Support for the 2010 Annual Meeting of the Society for Mathematical Psychology
支持数学心理学会2010年年会
- 批准号:
1021089 - 财政年份:2010
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
New Directions in Algorithms, Combinatorics and Optimization
算法、组合学和优化的新方向
- 批准号:
0802740 - 财政年份:2008
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Adapting Systems Factorial Technology to Model Selection:Applications to Perception and Classification
将系统因子技术应用于模型选择:在感知和分类中的应用
- 批准号:
0544688 - 财政年份:2006
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
FRG: Collaborative Research: The Four-Color Theorem and Beyond
FRG:协作研究:四色定理及其他
- 批准号:
0354742 - 财政年份:2004
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Characterization and Recognition of Perfect Graphs
完美图的表征和识别
- 批准号:
0200595 - 财政年份:2002
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
U.S.-France Cooperative Research: Digraph Minors
美法合作研究:有向图未成年人
- 批准号:
9603321 - 财政年份:1997
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似海外基金
REU Site: Microbial Biofilm Development, Resistance, & Community Structure
REU 网站:微生物生物膜的发展、耐药性、
- 批准号:
2349311 - 财政年份:2025
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
- 批准号:
10106704 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
EU-Funded
Structure-guided optimisation of light-driven microalgae cell factories
光驱动微藻细胞工厂的结构引导优化
- 批准号:
DP240101727 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Discovery Projects
LSS_BeyondAverage: Probing cosmic large-scale structure beyond the average
LSS_BeyondAverage:探测超出平均水平的宇宙大尺度结构
- 批准号:
EP/Y027906/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Statistical Foundations for Detecting Anomalous Structure in Stream Settings (DASS)
检测流设置中的异常结构的统计基础 (DASS)
- 批准号:
EP/Z531327/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Structure vs Invariants in Proofs (StrIP)
证明中的结构与不变量 (StrIP)
- 批准号:
MR/Y011716/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Fellowship
Structure, Dynamics and Activity of Bacterial Secretosome
细菌分泌体的结构、动力学和活性
- 批准号:
BB/Y004531/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Understanding the electronic structure landscape in wide band gap metal halide perovskites
了解宽带隙金属卤化物钙钛矿的电子结构景观
- 批准号:
EP/X039285/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Postdoctoral Fellowship: OPP-PRF: Leveraging Community Structure Data and Machine Learning Techniques to Improve Microbial Functional Diversity in an Arctic Ocean Ecosystem Model
博士后奖学金:OPP-PRF:利用群落结构数据和机器学习技术改善北冰洋生态系统模型中的微生物功能多样性
- 批准号:
2317681 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Understanding Processing-Structure-Property Relationships in Co-Axial Wire-Feed, Powder-Feed Laser Directed Energy Deposition
职业:了解同轴送丝、送粉激光定向能量沉积中的加工-结构-性能关系
- 批准号:
2338951 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant