Nonseparable Multiclass Learning for Object Tracking
用于对象跟踪的不可分离多类学习
基本信息
- 批准号:0354881
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-10-01 至 2007-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Robotics and Computer Vision ProgramABSTRACTProposal #: 0328802Title: Nonseparable Multiclass Learning for Object TrackingPI: Shen, XiaotongOhio State Univ Res FdnObject tracking is an important technology of image and video processing for many applications, including vision-guided automation, automatic target identification, object-based video compression, and face recognition. A fundamental tool that underlies the technology of object tracking is machine classification. Recent developments of binary psi-learning allow us to further achieve higher generalization accuracy for nonseparable and multiclass cases. This proposal presents an interdisciplinary research plan to address the problem of multiple object-tracking via this new learning tool. The project will investigate how the accuracy of psi-learning can be maximized by studying its generalization ability as well as methods for assessment. Specific desired outcomes of the project are (a) creation of a stable foundation for psi-learning and further development of learning theory, optimization theory, and algorithms, and (b) specific development of mechanisms for object tracking and extraction in multimedia compression.The proposed project is expected to have broad impacts to education, research, economy, and society at large. In particular, the technology developed in this project is widely applicable to scientific and engineering frontiers, including face-recognition, target identification, and cancer genomics classification. Plans for technology transfer are proposed to benefit the economy. The proposed educational program will train students in an interdisciplinary area of statistics and electrical engineering. Success of this project will bring tremendous benefits to fundamental scientific research, high-performance computing, and information technology, and have significant broad impacts to society at large.
机器人学和计算机视觉项目摘要提案编号:0328802标题:用于对象跟踪的不可分离多类学习PI:Shen,Xiaotong俄亥俄州立大学研究Fdn对象跟踪是许多应用的图像和视频处理的重要技术,包括视觉引导自动化、自动目标识别、基于对象的视频压缩和人脸识别。 对象跟踪技术的一个基本工具是机器分类。二元 psi 学习的最新发展使我们能够进一步实现不可分离和多类情况的更高泛化精度。该提案提出了一项跨学科研究计划,旨在通过这种新的学习工具解决多个对象跟踪问题。 该项目将研究如何通过研究 psi-learning 的泛化能力和评估方法来最大限度地提高 psi-learning 的准确性。 该项目的具体预期成果是(a)为 psi 学习奠定稳定的基础,并进一步发展学习理论、优化理论和算法,以及(b)多媒体压缩中对象跟踪和提取机制的具体开发。该项目预计将对教育、研究、经济和整个社会产生广泛影响。特别是,该项目开发的技术广泛适用于科学和工程前沿,包括人脸识别、目标识别和癌症基因组学分类。提出技术转让计划以造福经济。 拟议的教育计划将对统计和电气工程跨学科领域的学生进行培训。该项目的成功将为基础科学研究、高性能计算和信息技术带来巨大效益,对社会产生重大广泛影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaotong Shen其他文献
Adaptive Regularization through Entire Solution Surface
通过整个解决方案表面的自适应正则化
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
WU Seongho;Xiaotong Shen;C. Geyer - 通讯作者:
C. Geyer
Associations between plasma metals and hemoglobin in female college students with dysmenorrhea
- DOI:
10.1016/j.heliyon.2024.e37778 - 发表时间:
2024-09-30 - 期刊:
- 影响因子:
- 作者:
Qingzhi Hou;Yuchen Zhang;Hua Yang;Yunjie Wang;Zexi Xu;Jiujing Lin;Jia Li;Chenyang Hou;Zhanhui Qiu;Haoran Zhang;Ping Zhang;Xiangsheng Xue;Xiaotong Shen;Xinghua Xu;Hui Zou;Zhenrui Ma;Jing Gao;Xiaomei Li - 通讯作者:
Xiaomei Li
Vehicle Autonomy Using Cooperative Perception for Mobility-on-Demand Systems
使用协作感知实现按需出行系统的车辆自主
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Seong;T. Bandyopadhyay;B. Qin;Z. J. Chong;Wei Liu;Xiaotong Shen;S. Pendleton;J. Fu;M. Ang;Emilio Frazzoli;D. Rus - 通讯作者:
D. Rus
Pyridine emN/em‑Oxide-Promoted Cobalt-Catalyzed Dioxygen-Mediated Methane Oxidation
吡啶氮氧化物促进的钴催化双氧介导的甲烷氧化
- DOI:
10.1021/acs.joc.3c00770 - 发表时间:
2023-08-04 - 期刊:
- 影响因子:3.600
- 作者:
Bingyin Meng;Luyao Liu;Xiaotong Shen;Wu Fan;Suhua Li - 通讯作者:
Suhua Li
A DUF4281 domain-containing protein (homologue of ABA4) of emPhaeodactylum tricornutum/em regulates the biosynthesis of fucoxanthin
三角褐指藻中的一个含 DUF4281 结构域的蛋白(ABA4 的同源物)调节岩藻黄质的生物合成
- DOI:
10.1016/j.algal.2022.102728 - 发表时间:
2022-06-01 - 期刊:
- 影响因子:4.500
- 作者:
Xiaotong Shen;Kehou Pan;Lin Zhang;Baohua Zhu;Yun Li;Jichang Han - 通讯作者:
Jichang Han
Xiaotong Shen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaotong Shen', 18)}}的其他基金
FRG: Collaborative Research: Generative Learning on Unstructured Data with Applications to Natural Language Processing and Hyperlink Prediction
FRG:协作研究:非结构化数据的生成学习及其在自然语言处理和超链接预测中的应用
- 批准号:
1952539 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Collaborative Learning for Multimodal Data
协作研究:多模态数据的协作学习
- 批准号:
1712564 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Automatic Video Interpretation and Description
合作研究:自动视频解释和描述
- 批准号:
1721216 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: New statistical learning and scalable computation for large unstructured data
协作研究:大型非结构化数据的新统计学习和可扩展计算
- 批准号:
1415500 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Proposal: International Research and Education: Workshops in Statistics
合作提案:国际研究和教育:统计研讨会
- 批准号:
0634639 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Standard Grant
Inference and Prediction in a Complex Discovery Process
复杂发现过程中的推理和预测
- 批准号:
0604394 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Standard Grant
Nonseparable Multiclass Learning for Object Tracking
用于对象跟踪的不可分离多类学习
- 批准号:
0328802 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Continuing Grant
Semiparametric and Nonparametric Inferences
半参数和非参数推理
- 批准号:
0072635 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Multimodal, multiclass prediction of disease status in Alzheimer’s
阿尔茨海默病疾病状态的多模式、多类预测
- 批准号:
10730543 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Multimodal, multiclass prediction of disease status in Alzheimer’s
阿尔茨海默病疾病状态的多模式、多类预测
- 批准号:
10538418 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Multiclass classification under prioritized error control and specific error costs with applications to dementia classification
优先错误控制和特定错误成本下的多类分类及其在痴呆症分类中的应用
- 批准号:
10301841 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Multiclass classification under prioritized error control and specific error costs with applications to dementia classification
优先错误控制和特定错误成本下的多类分类及其在痴呆症分类中的应用
- 批准号:
10474461 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Soft-magin support vector machine maximizing geometric margins for multiclass classification
软磁极支持向量机最大化多类分类的几何边距
- 批准号:
24500275 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Intelligent Pre- and Post-Processing Algorithms for Autonomous Multiclass Brain-Computer Interfaces
自主多类脑机接口的智能预处理和后处理算法
- 批准号:
EP/H012958/1 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Grant
Nonseparable Multiclass Learning for Object Tracking
用于对象跟踪的不可分离多类学习
- 批准号:
0328802 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Continuing Grant
Power Control and Call Admission Policies for Multiclass Traffic in SIR-Based Power-Controlled DS-CDMA Cellular Networks
基于 SIR 的功率控制 DS-CDMA 蜂窝网络中多类流量的功率控制和呼叫准入策略
- 批准号:
0203063 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Standard Grant
Development of Multiclass Support Vector Machines and Their Application to Diagnosis and Image Processing
多类支持向量机的发展及其在诊断和图像处理中的应用
- 批准号:
14350211 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Scheduling of Multiclass Queueing Networks via Fluid Models
职业:通过流体模型调度多类排队网络
- 批准号:
0132038 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Continuing Grant