Mining structured tensor data

挖掘结构化张量数据

基本信息

  • 批准号:
    1207771
  • 负责人:
  • 金额:
    $ 20.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-01 至 2016-06-30
  • 项目状态:
    已结题

项目摘要

Structured modeling situations, with multivariate data involving tensors, are treated using constrained likelihood approaches, as an efficient means to exploit lower-dimensional structure for high-order analysis. In gene network analysis, for example, a constrained approach helps reveal gene-gene relations in a context of multiple graphical models. Special attention is devoted to the appropriate choice of the constraints for adaptation to a variety of structures. The general theme of the proposed project is the development of statistical methods of practical utility, both in prediction and estimation. In particular, the proposed project develops methods for (a) multiple graphical models for structure extraction, and for (b) high-order analysis of tensor data. The proposed research is primarily motivated by challenging problems that arise in gene network analysis and collaborative filtering, where one central issue is how to leverage and utilize lower-dimensional structure to battle high statistical uncertainty in a discovery process. New techniques are proposed and investigated, both computationally and statistically, which target biomedical and engineering problems. In (a) and (b), our effort will be on classification and regression, and on structure adaptation through tensor decomposition and factorization, with most effort focused towards condition specific extraction of lower-dimensional structure.Modern scientific and engineering investigation, as in biomedical research and computer vision, now produces enormous data that aim to simultaneously explore relations among hundreds and thousands interacting units. This project proposes methods for treating the new scientific environment. The project develops technology that is directly applicable to applied research, particularly in automatic machine processing and data mining, biomedical research, advertisement, and economics. Plans for technology transfer are described, in addition to an educational program that will train students in statistical learning and data mining. Educational activities include developing a course, and attracting undergraduate students to research.
结构化建模的情况下,涉及张量的多变量数据,被视为使用约束似然方法,作为一种有效的手段,利用低维结构的高阶分析。 例如,在基因网络分析中,约束方法有助于在多个图形模型的上下文中揭示基因-基因关系。特别注意的是适当选择的约束,以适应各种结构。拟议项目的总主题是发展预测和估计方面的实用统计方法。特别是,拟议的项目开发方法(a)多个图形模型的结构提取,和(B)高阶分析张量数据。这项研究的主要动机是基因网络分析和协同过滤中出现的挑战性问题,其中一个核心问题是如何利用和利用低维结构来对抗发现过程中的高统计不确定性。 新技术的提出和调查,计算和统计,目标生物医学和工程问题。在(a)和(B)中,我们将致力于分类和回归,以及通过张量分解和因子分解进行结构自适应,其中大部分工作集中在低维结构的特定条件提取上。现代科学和工程研究,如生物医学研究和计算机视觉,现在产生大量数据,旨在同时探索数百和数千个相互作用的单元之间的关系。 该项目提出了处理新的科学环境的方法。该项目开发直接适用于应用研究的技术,特别是自动机器处理和数据挖掘,生物医学研究,广告和经济学。技术转让计划的描述,除了教育计划,将培训学生在统计学习和数据挖掘。教育活动包括开发一门课程,吸引本科生进行研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaotong Shen其他文献

Adaptive Regularization through Entire Solution Surface
通过整个解决方案表面的自适应正则化
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    WU Seongho;Xiaotong Shen;C. Geyer
  • 通讯作者:
    C. Geyer
Associations between plasma metals and hemoglobin in female college students with dysmenorrhea
  • DOI:
    10.1016/j.heliyon.2024.e37778
  • 发表时间:
    2024-09-30
  • 期刊:
  • 影响因子:
  • 作者:
    Qingzhi Hou;Yuchen Zhang;Hua Yang;Yunjie Wang;Zexi Xu;Jiujing Lin;Jia Li;Chenyang Hou;Zhanhui Qiu;Haoran Zhang;Ping Zhang;Xiangsheng Xue;Xiaotong Shen;Xinghua Xu;Hui Zou;Zhenrui Ma;Jing Gao;Xiaomei Li
  • 通讯作者:
    Xiaomei Li
Vehicle Autonomy Using Cooperative Perception for Mobility-on-Demand Systems
使用协作感知实现按需出行系统的车辆自主
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Seong;T. Bandyopadhyay;B. Qin;Z. J. Chong;Wei Liu;Xiaotong Shen;S. Pendleton;J. Fu;M. Ang;Emilio Frazzoli;D. Rus
  • 通讯作者:
    D. Rus
A DUF4281 domain-containing protein (homologue of ABA4) of emPhaeodactylum tricornutum/em regulates the biosynthesis of fucoxanthin
三角褐指藻中的一个含 DUF4281 结构域的蛋白(ABA4 的同源物)调节岩藻黄质的生物合成
Pyridine emN/em‑Oxide-Promoted Cobalt-Catalyzed Dioxygen-Mediated Methane Oxidation
吡啶氮氧化物促进的钴催化双氧介导的甲烷氧化
  • DOI:
    10.1021/acs.joc.3c00770
  • 发表时间:
    2023-08-04
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Bingyin Meng;Luyao Liu;Xiaotong Shen;Wu Fan;Suhua Li
  • 通讯作者:
    Suhua Li

Xiaotong Shen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaotong Shen', 18)}}的其他基金

FRG: Collaborative Research: Generative Learning on Unstructured Data with Applications to Natural Language Processing and Hyperlink Prediction
FRG:协作研究:非结构化数据的生成学习及其在自然语言处理和超链接预测中的应用
  • 批准号:
    1952539
  • 财政年份:
    2020
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Standard Grant
Collaborative Research: Collaborative Learning for Multimodal Data
协作研究:多模态数据的协作学习
  • 批准号:
    1712564
  • 财政年份:
    2017
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Standard Grant
Collaborative Research: Automatic Video Interpretation and Description
合作研究:自动视频解释和描述
  • 批准号:
    1721216
  • 财政年份:
    2017
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Standard Grant
Collaborative Research: New statistical learning and scalable computation for large unstructured data
协作研究:大型非结构化数据的新统计学习和可扩展计算
  • 批准号:
    1415500
  • 财政年份:
    2014
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Standard Grant
Structured classification and regression
结构化分类和回归
  • 批准号:
    0906616
  • 财政年份:
    2009
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Standard Grant
Collaborative Proposal: International Research and Education: Workshops in Statistics
合作提案:国际研究和教育:统计研讨会
  • 批准号:
    0634639
  • 财政年份:
    2006
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Standard Grant
Inference and Prediction in a Complex Discovery Process
复杂发现过程中的推理和预测
  • 批准号:
    0604394
  • 财政年份:
    2006
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Standard Grant
Nonseparable Multiclass Learning for Object Tracking
用于对象跟踪的不可分离多类学习
  • 批准号:
    0354881
  • 财政年份:
    2003
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Continuing Grant
Nonseparable Multiclass Learning for Object Tracking
用于对象跟踪的不可分离多类学习
  • 批准号:
    0328802
  • 财政年份:
    2003
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Continuing Grant
Semiparametric and Nonparametric Inferences
半参数和非参数推理
  • 批准号:
    0072635
  • 财政年份:
    2000
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Continuing Grant
Study on p-type doping of ultra wide bandgap rutile-structured germanium oxide
超宽带隙金红石结构氧化锗的p型掺杂研究
  • 批准号:
    24K17312
  • 财政年份:
    2024
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Computing over Compressed Graph-Structured Data
压缩图结构数据的计算
  • 批准号:
    EP/X039447/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Research Grant
Nano-structured RC Networks - A Pathway To Artificial Skin
纳米结构 RC 网络 - 人造皮肤的途径
  • 批准号:
    EP/Y002172/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Research Grant
Efficient Federated Learning for Deep Learning Through Structured Training
通过结构化训练实现深度学习的高效联邦学习
  • 批准号:
    24K20845
  • 财政年份:
    2024
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Revolutionizing Tactile AI: Developing a Soft, Liquid-Structured, High Density, 3-Axis Tactile Sensor
彻底改变触觉 AI:开发柔软、液体结构、高密度、3 轴触觉传感器
  • 批准号:
    24K20874
  • 财政年份:
    2024
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Elucidating the Formation and Evolution of Metastable Phases in Fluorite-Structured Ferroelectrics using Advanced Electron Microscopy
职业:使用先进电子显微镜阐明萤石结构铁电体中亚稳相的形成和演化
  • 批准号:
    2338558
  • 财政年份:
    2024
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Continuing Grant
Additive Micro/Nano-manufacturing of Structured Piezoelectric Active Materials for Intelligent Stent Monitoring
用于智能支架监测的结构化压电活性材料的增材微/纳米制造
  • 批准号:
    EP/Y003551/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Research Grant
From shape to function: how structured RNA defines insect flaviviruses
从形状到功能:RNA结构如何定义昆虫黄病毒
  • 批准号:
    DP240102506
  • 财政年份:
    2024
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Discovery Projects
CAREER: Learning from Data on Structured Complexes: Products, Bundles, and Limits
职业:从结构化复合体的数据中学习:乘积、捆绑和限制
  • 批准号:
    2340481
  • 财政年份:
    2024
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了