Collaborative Research: Collaborative Learning for Multimodal Data
协作研究:多模态数据的协作学习
基本信息
- 批准号:1712564
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A multimodal paradigm has become increasingly important given today's explosive growth of information, which often arises from, for instance, automatic image categorization and personalized prediction. Multimodal data has a wide spectrum of applications in medical diagnostics, social networking, multimedia, information filtering, personalized advertising, consumers' recommendations, virtually in any electronic commerce and entertainment platform. This research aims to develop statistical theory, methods, and computational tools to integrate multimodal data for prediction and description. The development will lead to the higher accuracy of learning, which will ultimately enhance information storage, sorting and filtering. Moreover, the research project has an education component to train graduate students in emerging areas. The research products will be disseminated through publications and presentations.The proposed research aims to develop statistical techniques to utilize conditional dependence structures for integrating multimodal data. It will proceed in the areas of collaborative learning and personalized prediction. In each area, regression, classification, and ranking will be performed collaboratively based on pairwise conditional dependencies between the response components, modeled by a directed graph or an undirected graph. Special efforts will be devoted to the joint learning of data of multiple modalities and extraction of latent structures with an adjustment for covariates. Target applications include image categorization and recommender systems, where the proposed techniques will be applied to understand the content of an image and to predict personalized preference over a large number of items. Furthermore, The research will develop computational tools and design methods that have desirable statistical properties.
鉴于当今信息的爆炸式增长,多模式范式变得越来越重要,这些信息通常来自自动图像分类和个性化预测。多模态数据在医疗诊断、社交网络、多媒体、信息过滤、个性化广告、消费者推荐等方面具有广泛的应用,几乎可以在任何电子商务和娱乐平台中使用。本研究旨在发展统计理论、方法和计算工具,以整合多模态数据进行预测和描述。这一发展将导致学习的准确性更高,最终将增强信息的存储、排序和过滤。此外,该研究项目有一个教育组成部分,以培养新兴领域的研究生。研究成果将通过出版物和简报传播。本研究旨在发展统计技术,利用条件依赖结构来整合多模态数据。它将在协作学习和个性化预测领域继续发展。在每个领域,回归、分类和排序将基于响应组件之间的成对条件依赖关系协同执行,由有向图或无向图建模。特别的努力将致力于多模态数据的联合学习和潜在结构的提取与协变量的调整。目标应用包括图像分类和推荐系统,其中所提出的技术将用于理解图像的内容并预测大量项目的个性化偏好。此外,该研究将开发具有理想统计特性的计算工具和设计方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaotong Shen其他文献
Adaptive Regularization through Entire Solution Surface
通过整个解决方案表面的自适应正则化
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
WU Seongho;Xiaotong Shen;C. Geyer - 通讯作者:
C. Geyer
Associations between plasma metals and hemoglobin in female college students with dysmenorrhea
- DOI:
10.1016/j.heliyon.2024.e37778 - 发表时间:
2024-09-30 - 期刊:
- 影响因子:
- 作者:
Qingzhi Hou;Yuchen Zhang;Hua Yang;Yunjie Wang;Zexi Xu;Jiujing Lin;Jia Li;Chenyang Hou;Zhanhui Qiu;Haoran Zhang;Ping Zhang;Xiangsheng Xue;Xiaotong Shen;Xinghua Xu;Hui Zou;Zhenrui Ma;Jing Gao;Xiaomei Li - 通讯作者:
Xiaomei Li
Vehicle Autonomy Using Cooperative Perception for Mobility-on-Demand Systems
使用协作感知实现按需出行系统的车辆自主
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Seong;T. Bandyopadhyay;B. Qin;Z. J. Chong;Wei Liu;Xiaotong Shen;S. Pendleton;J. Fu;M. Ang;Emilio Frazzoli;D. Rus - 通讯作者:
D. Rus
A DUF4281 domain-containing protein (homologue of ABA4) of emPhaeodactylum tricornutum/em regulates the biosynthesis of fucoxanthin
三角褐指藻中的一个含 DUF4281 结构域的蛋白(ABA4 的同源物)调节岩藻黄质的生物合成
- DOI:
10.1016/j.algal.2022.102728 - 发表时间:
2022-06-01 - 期刊:
- 影响因子:4.500
- 作者:
Xiaotong Shen;Kehou Pan;Lin Zhang;Baohua Zhu;Yun Li;Jichang Han - 通讯作者:
Jichang Han
Pyridine emN/em‑Oxide-Promoted Cobalt-Catalyzed Dioxygen-Mediated Methane Oxidation
吡啶氮氧化物促进的钴催化双氧介导的甲烷氧化
- DOI:
10.1021/acs.joc.3c00770 - 发表时间:
2023-08-04 - 期刊:
- 影响因子:3.600
- 作者:
Bingyin Meng;Luyao Liu;Xiaotong Shen;Wu Fan;Suhua Li - 通讯作者:
Suhua Li
Xiaotong Shen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaotong Shen', 18)}}的其他基金
FRG: Collaborative Research: Generative Learning on Unstructured Data with Applications to Natural Language Processing and Hyperlink Prediction
FRG:协作研究:非结构化数据的生成学习及其在自然语言处理和超链接预测中的应用
- 批准号:
1952539 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Automatic Video Interpretation and Description
合作研究:自动视频解释和描述
- 批准号:
1721216 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: New statistical learning and scalable computation for large unstructured data
协作研究:大型非结构化数据的新统计学习和可扩展计算
- 批准号:
1415500 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Proposal: International Research and Education: Workshops in Statistics
合作提案:国际研究和教育:统计研讨会
- 批准号:
0634639 - 财政年份:2006
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Inference and Prediction in a Complex Discovery Process
复杂发现过程中的推理和预测
- 批准号:
0604394 - 财政年份:2006
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Nonseparable Multiclass Learning for Object Tracking
用于对象跟踪的不可分离多类学习
- 批准号:
0354881 - 财政年份:2003
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Nonseparable Multiclass Learning for Object Tracking
用于对象跟踪的不可分离多类学习
- 批准号:
0328802 - 财政年份:2003
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Semiparametric and Nonparametric Inferences
半参数和非参数推理
- 批准号:
0072635 - 财政年份:2000
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
- 批准号:
2409652 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
- 批准号:
2414474 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
- 批准号:
2347423 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342498 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403312 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Learning for Safe and Secure Operation of Grid-Edge Resources
协作研究:学习电网边缘资源的安全可靠运行
- 批准号:
2330154 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331302 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331710 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331711 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant