Modular forms and Galois representations in finite characteristic
有限特征中的模形式和伽罗瓦表示
基本信息
- 批准号:0355528
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-07-01 至 2008-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACTSome of the most important theorems in mathematics are those whichconnect up different fields, concepts or view-points. In algebraicnumber theory many of such theorems go under the name of reciprocitylaws. The general framework for reciprocity laws is the Langlandsprogram. Much of the PI's work deals with issues that arise fromreciprocity laws especially in the context of linear, mod prepresentations of the absolute Galois group of the rationals. Areciprocity law in this case has been conjectured by J-P. Serre.Motivated by Serre's conjecture and related issues the PI has studiedcongruences between modular forms and deformations of Galoisrepresentations. The PI will continue to study and develop tools toapproach such reciprocity laws and related questions that have abearing on the intricate relationship between automorphic forms andGalois representations in the future.Any progress towards establishing reciprocity laws has a very broadimpact that is felt all across number theory. The work of the PI onreciprocity laws involves coming up with new ideas and techniques thatimpact many central areas of mathematics, like those mentioned above,and potentially might be useful to applications of number theory inareas like cryptography that are of great practical use. The PI alsoexpects to disseminate knowledge by involving students in researchproject
数学中一些最重要的定理是那些连接不同领域、概念或观点的定理。在代数数论中,许多这样的定理都被称为互反律。互惠律的一般框架是朗兰兹纲领。PI的大部分工作涉及的问题,所产生的fromreciprocity法律,特别是在线性的背景下,模prepresentations的绝对伽罗瓦集团的有理数。在这种情况下的一个互反律已由J-P. Serre证明,受Serre猜想及相关问题的启发,PI研究了Galois表示的模形式与变形之间的同余关系。未来,PI将继续研究和开发工具,以处理此类互易定律以及与自守形式和伽罗瓦表示之间错综复杂的关系有关的相关问题。建立互易定律的任何进展都将对整个数论产生非常广泛的影响。PI在互反定律上的工作涉及到提出新的思想和技术,这些思想和技术影响了数学的许多中心领域,就像上面提到的那些,并且可能对数论在密码学等领域的应用很有用。PI还希望通过让学生参与研究项目来传播知识
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chandrashekhar Khare其他文献
Multiplicities of modp Galois representations
- DOI:
10.1007/bf02678024 - 发表时间:
1998-12-01 - 期刊:
- 影响因子:0.600
- 作者:
Chandrashekhar Khare - 通讯作者:
Chandrashekhar Khare
Maps between Jacobians of Shimura curves and congruence kernels
- DOI:
10.1007/pl00004439 - 发表时间:
2001-02-01 - 期刊:
- 影响因子:1.400
- 作者:
Chandrashekhar Khare;San Ling - 通讯作者:
San Ling
A note on restriction maps in the cohomology¶of S-arithmetic groups
- DOI:
10.1007/s002290070031 - 发表时间:
2000-09-01 - 期刊:
- 影响因子:0.600
- 作者:
Chandrashekhar Khare - 通讯作者:
Chandrashekhar Khare
Chandrashekhar Khare的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chandrashekhar Khare', 18)}}的其他基金
Obstructed deformation rings and modularity of Galois representations
受阻变形环和伽罗瓦表示的模块化
- 批准号:
2200390 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
Dimensions of Deformation Rings and Automorphy Lifting Theorems
变形环的维数和自守提升定理
- 批准号:
1601692 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant
Automorphic forms, Galois representations and ramification
自守形式、伽罗瓦表示和衍生
- 批准号:
1161671 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: Slopes of Modular Forms and Moduli Stacks of Galois Representations
合作研究:伽罗瓦表示的模形式和模栈的斜率
- 批准号:
2302284 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Congruences between modular forms, Galois representations, and arithmetic consequences
模形式、伽罗瓦表示和算术结果之间的同余
- 批准号:
2301738 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Slopes of Modular Forms and Moduli Stacks of Galois Representations
合作研究:伽罗瓦表示的模形式和模栈的斜率
- 批准号:
2302285 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Galois Representations and Slopes of Modular Forms
伽罗瓦表示和模形式的斜率
- 批准号:
502345-2017 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Explicit Galois Deformation Theory, Modular Forms, and Iwasawa Theory
显式伽罗瓦变形理论、模形式和岩泽理论
- 批准号:
1901867 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Continuing Grant
Galois Representations and Slopes of Modular Forms
伽罗瓦表示和模形式的斜率
- 批准号:
502345-2017 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Galois Representations and Slopes of Modular Forms
伽罗瓦表示和模形式的斜率
- 批准号:
502345-2017 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Characterizations of Galois representations associated to Hilbert modular forms
与希尔伯特模形式相关的伽罗瓦表示的特征
- 批准号:
17H07074 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Theory of congruences of Galois representations and modular forms for function fields
函数域的伽罗瓦表示和模形式的同余理论
- 批准号:
26400016 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)