Dimensions of Deformation Rings and Automorphy Lifting Theorems

变形环的维数和自守提升定理

基本信息

  • 批准号:
    1601692
  • 负责人:
  • 金额:
    $ 15.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-01 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

This research project studies questions in algebraic number theory. The connection between number theory and automorphic forms, which are generalizations of periodic functions, is a very active area of investigation and has led to solutions of longstanding problems in number theory. Such work has applications to solving Diophantine equations -- algebraic equations with integer coefficients for which integer solutions are sought -- which play a role in a wide range of applications from encryption protocols to error correction. Additionally, methods developed in the area of algebraic number theory can have other surprising applications to cryptography. This project aims to deepen knowledge in this important subject.The questions that the project studies are related to classical problems in number theory, including the Leopoldt conjecture and higher dimensional analogs. The methods to be used relate to automorphy lifting theorems, which have played a crucial role in important developments such as the proof of Fermat's Last Theorem and the proof of Serre's conjecture. The project aims to augment these methods and to make them more flexible, which will lead to more applications in the field of solutions of polynomial equations and its relation to automorphic forms.
这个研究项目研究代数数论中的问题。数论和自守形式之间的联系是周期函数的推广,是一个非常活跃的研究领域,并导致了数论中长期存在的问题的解决方案。这样的工作有应用程序解决丢番图方程-代数方程与整数系数的整数解决方案寻求-这在广泛的应用程序中发挥作用,从加密协议的纠错。 此外,在代数数论领域开发的方法可以在密码学中有其他令人惊讶的应用。本计画旨在加深对这一重要课题的认识,研究的问题与数论中的经典问题有关,包括Leopoldt猜想和高维类似物。将使用的方法涉及自同构提升定理,这在重要的发展中发挥了至关重要的作用,如费马大定理的证明和塞尔猜想的证明。该项目旨在扩充这些方法并使其更加灵活,这将导致在多项式方程的解及其与自守形式的关系领域中的更多应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chandrashekhar Khare其他文献

Multiplicities of modp Galois representations
  • DOI:
    10.1007/bf02678024
  • 发表时间:
    1998-12-01
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Chandrashekhar Khare
  • 通讯作者:
    Chandrashekhar Khare
Maps between Jacobians of Shimura curves and congruence kernels
  • DOI:
    10.1007/pl00004439
  • 发表时间:
    2001-02-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Chandrashekhar Khare;San Ling
  • 通讯作者:
    San Ling
A note on restriction maps in the cohomology¶of S-arithmetic groups
  • DOI:
    10.1007/s002290070031
  • 发表时间:
    2000-09-01
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Chandrashekhar Khare
  • 通讯作者:
    Chandrashekhar Khare

Chandrashekhar Khare的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chandrashekhar Khare', 18)}}的其他基金

Obstructed deformation rings and modularity of Galois representations
受阻变形环和伽罗瓦表示的模块化
  • 批准号:
    2200390
  • 财政年份:
    2022
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Continuing Grant
Automorphic forms, Galois representations and ramification
自守形式、伽罗瓦表示和衍生
  • 批准号:
    1161671
  • 财政年份:
    2012
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Continuing Grant
Modular Galois representations
模伽罗瓦表示
  • 批准号:
    0840649
  • 财政年份:
    2008
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Continuing Grant
Modular Galois representations
模伽罗瓦表示
  • 批准号:
    0653821
  • 财政年份:
    2007
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Continuing Grant
Modular forms and Galois representations in finite characteristic
有限特征中的模形式和伽罗瓦表示
  • 批准号:
    0355528
  • 财政年份:
    2004
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Leveraging Plastic Deformation Mechanisms Interactions in Metallic Materials to Access Extraordinary Fatigue Strength.
职业:利用金属材料中的塑性变形机制相互作用来获得非凡的疲劳强度。
  • 批准号:
    2338346
  • 财政年份:
    2024
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Continuing Grant
Does deformation lead to misinformation? How much can granitic rocks deform before accessory minerals are geochemically disturbed?
变形会导致错误信息吗?
  • 批准号:
    2342159
  • 财政年份:
    2024
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Standard Grant
Nuclear deformation and symmetry breaking from an ab-initio perspective
从头算角度看核变形和对称性破缺
  • 批准号:
    MR/Y034007/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Fellowship
How does water move through the subducting slab? Slab-scale fluid pathways and deformation-fluid flow feedbacks at eclogite facies
水如何穿过俯冲板片?
  • 批准号:
    2317586
  • 财政年份:
    2024
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Standard Grant
Deformation of singularities through Hodge theory and derived categories
通过霍奇理论和派生范畴进行奇点变形
  • 批准号:
    DP240101934
  • 财政年份:
    2024
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Discovery Projects
4D Printed Origami Structures: Deformation Mechanisms and Mechanics
4D 打印折纸结构:变形机制和力学
  • 批准号:
    DP240103328
  • 财政年份:
    2024
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Discovery Projects
CAREER: Recycled Polymers of Enhanced Strength and Toughness: Predicting Failure and Unraveling Deformation to Enable Circular Transitions
职业:增强强度和韧性的再生聚合物:预测失效和解开变形以实现圆形过渡
  • 批准号:
    2338508
  • 财政年份:
    2024
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: EAR-PF: The effects of grain-scale deformation on helium diffusion and thermochronometric ages of accessory minerals
博士后奖学金:EAR-PF:晶粒尺度变形对氦扩散和副矿物热测年年龄的影响
  • 批准号:
    2305568
  • 财政年份:
    2024
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Fellowship Award
Influence of Fracture Heterogeneity on Rock Deformation and Failure (INFORM): A Mechanics-based Multi-scale Framework for Radioactive Waste Disposal
裂缝非均质性对岩石变形和破坏的影响(INFORM):基于力学的放射性废物处置多尺度框架
  • 批准号:
    EP/W031221/2
  • 财政年份:
    2024
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Research Grant
Collaborative Research: Elucidating High Temperature Deformation Mechanisms in Refractory Multi-Principal-Element Alloys
合作研究:阐明难熔多主元合金的高温变形机制
  • 批准号:
    2313860
  • 财政年份:
    2023
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了