Studies in Commutative Algebra and Algebraic Geometry
交换代数和代数几何研究
基本信息
- 批准号:0400633
- 负责人:
- 金额:$ 30.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-07-01 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Several central open questions concerning tight closure in positivecharacteristic, such as whether tight closure commutes withlocalization, and whether the tight closure of an ideal of a domaincoincides, in good cases, with the contracted expansion of the idealfrom the absolute integral closure of the domain are proposed for study.Another main thrust is to explore several notions of closurein rings that do not contain a field, such as finitely generated algebrasover the integers, with the hope of extending tight closure theory to suchrings, thereby solving many open questions. A new approach to theproblem of proving existence of big Cohen-Macaulay modules inmixed characteristic will be pursued, as well as several lines ofresearch aimed at solving the long standing and important questionof whether regular rings are direct summands of their module-finiteextensions.Commutative rings are abstract systems in which one can performaddition, subtraction and multiplication. The integers andreal or complex numbers are examples, but there are vastlydifferent sorts of rings as well, including finite rings. Onecan introduce variable elements into any ring, forming a largerring. Ring theory can be used to study the behavior of large systemsof equations in many variables. There are methods of transitionfrom the study of equations with real or complex coefficients to thestudy of related systems with coefficients in a finite ring. Thesemethods produce qualtitative information about the solutions ofthe original systems of equations: sometimes one can determine whetherthere exist solutions and, if so, what the dimension of the solutionspace is. Most of the problems in the proposal can be viewed asproblems about solving equations. The projects in the proposalwill provide fundamental information about the nature of thesolutions for many sorts of systems of equations.
本文提出了正特征线中关于紧闭包的几个中心问题,如紧闭包是否与局部化互换,以及理想的紧闭包是否与理想的收缩扩张一致等.另一个主要目的是探讨不含域环中的几个闭包概念,如整数环上的紧生成代数,希望将紧闭包理论推广到这类环上,从而解决许多悬而未决的问题。 一个新的方法来证明混合特征的大Cohen-Macaulay模的存在性的问题将被追求,以及几条线的研究,旨在解决长期存在的和重要的问题,是否正则环是其模有限扩张的直和。 整数和实数或复数都是例子,但也有各种各样的环,包括有限环。 一个环可以在任何环中引入可变元素,形成一个更大的环。 环理论可以用来研究多变量的大型方程组的行为。 从研究真实的或复系数方程到研究有限环中系数的相关系统有过渡的方法。 这些方法产生了关于原始方程组解的定性信息:有时人们可以确定是否存在解,如果存在,解空间的维数是多少。 建议中的大部分问题都可以看作是解方程的问题。 该计划中的项目将提供关于许多类型方程组的解的性质的基本信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Melvin Hochster其他文献
Extensions of primes, flatness, and intersection flatness
素数、平坦度和相交平坦度的扩展
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Melvin Hochster;Jack Jeffries - 通讯作者:
Jack Jeffries
Melvin Hochster的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Melvin Hochster', 18)}}的其他基金
Studies in Commutative Algebra and Algebraic Geometry
交换代数和代数几何研究
- 批准号:
1902116 - 财政年份:2019
- 资助金额:
$ 30.5万 - 项目类别:
Continuing Grant
Commutative Algebra and Its Interactions with Algebraic Geometry
交换代数及其与代数几何的相互作用
- 批准号:
1600665 - 财政年份:2016
- 资助金额:
$ 30.5万 - 项目类别:
Standard Grant
Studies in Commutative Algebra and Algebraic Geometry
交换代数和代数几何研究
- 批准号:
1401384 - 财政年份:2014
- 资助金额:
$ 30.5万 - 项目类别:
Continuing Grant
Studies in Commutative Algebra and Algebraic Geometry
交换代数和代数几何研究
- 批准号:
0901145 - 财政年份:2009
- 资助金额:
$ 30.5万 - 项目类别:
Continuing Grant
Homological Conjectures in Commutative Algebra: A Conference in Honor of Paul C. Roberts
交换代数中的同调猜想:纪念 Paul C. Roberts 的会议
- 批准号:
0555525 - 财政年份:2006
- 资助金额:
$ 30.5万 - 项目类别:
Standard Grant
Studies in Commutative Algebra and Algebraic Geometry
交换代数和代数几何研究
- 批准号:
9970702 - 财政年份:1999
- 资助金额:
$ 30.5万 - 项目类别:
Continuing Grant
Studies In Commutative Algebra & Algebraic Geometry
交换代数研究
- 批准号:
9401428 - 财政年份:1994
- 资助金额:
$ 30.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Studies in Commutative Algebra and Algebraic Geometry
数学科学:交换代数和代数几何研究
- 批准号:
8902390 - 财政年份:1989
- 资助金额:
$ 30.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Studies in Commutative Algebra and Algebraic Geometry
数学科学:交换代数和代数几何研究
- 批准号:
8600036 - 财政年份:1986
- 资助金额:
$ 30.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Commutative Rings and Algebraic Geometry
数学科学:交换环和代数几何
- 批准号:
8301241 - 财政年份:1983
- 资助金额:
$ 30.5万 - 项目类别:
Continuing Grant
相似海外基金
Studies in Commutative Algebra and Algebraic Geometry
交换代数和代数几何研究
- 批准号:
2200501 - 财政年份:2022
- 资助金额:
$ 30.5万 - 项目类别:
Continuing Grant
Studies in Commutative Algebra and Algebraic Geometry
交换代数和代数几何研究
- 批准号:
1902116 - 财政年份:2019
- 资助金额:
$ 30.5万 - 项目类别:
Continuing Grant
Studies in Commutative Algebra and Algebraic Geometry
交换代数和代数几何研究
- 批准号:
1401384 - 财政年份:2014
- 资助金额:
$ 30.5万 - 项目类别:
Continuing Grant
Pan American Advanced Studies Institute: Commutative Algebra and Its Interactions with Algebraic Geometry, Representation Theory, and Physics; Guanajuato, Mexico; May 14-25, 2012
泛美高等研究院:交换代数及其与代数几何、表示论和物理学的相互作用;
- 批准号:
1123059 - 财政年份:2012
- 资助金额:
$ 30.5万 - 项目类别:
Standard Grant
Studies in Commutative Algebra and Algebraic Geometry
交换代数和代数几何研究
- 批准号:
0901145 - 财政年份:2009
- 资助金额:
$ 30.5万 - 项目类别:
Continuing Grant