Commutative Algebra and Its Interactions with Algebraic Geometry
交换代数及其与代数几何的相互作用
基本信息
- 批准号:1600665
- 负责人:
- 金额:$ 4.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-05-01 至 2017-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award will provide support for participants, particularly junior researchers and graduate students, attending the conference "Commutative Algebra and Its Interactions with Algebraic Geometry," which will be held at the University of Michigan, Ann Arbor, during the period July 7-12, 2015. The conference will feature talks by a large number of researchers, representing a wide range of levels of seniority and a wide range of mathematical perspectives. The conference will foster the discovery of new connections in the theme fields and encourage new interactions and collaborations. It will provide an excellent opportunity for junior participants to meet and learn from established experts in the field, as well as to make their own work widely known. The extremely strong list of invited speakers will enable the conference to attract a large and diverse set of participants. The conference will focus on the explosive growth of ideas connected with tight closure theory and associated asymptotic numerical invariants like Hilbert-Kunz multiplicity and F-rational signature; the analogies between notions related to tight closure theory (e.g., the theory of test ideals, various kinds of singularities defined by positive characteristic methods, and F-pure thresholds) and notions defined in algebraic geometry over the complex numbers (e.g., the theory of multiplier ideals, various kinds of singularities defined by geometric methods, and log canonical thresholds); as well as many related questions. These ideas are on the cutting edge of contemporary commutative algebra and such a large and prestigious gathering creates the potential for dramatic progress on outstanding problems and the discovery of new and illuminating research directions.
该奖项将为参与者提供支持,特别是初级研究人员和研究生,参加会议“交换代数及其与代数几何的相互作用”,这将是在密歇根大学,安阿伯,在2015年7月7日至12日期间举行。会议将由大量的研究人员进行会谈,代表了广泛的资历和广泛的数学观点。 会议将促进发现主题领域的新联系,并鼓励新的互动和合作。它将为初级参与者提供一个极好的机会,与该领域的知名专家见面和学习,并使他们自己的工作广为人知。邀请的发言者名单非常强大,将使会议能够吸引大量不同的与会者。会议将重点关注与紧闭包理论和相关的渐近数值不变量(如希尔伯特-昆兹多重性和F-有理数签名)相关的思想的爆炸性增长;与紧闭包理论相关的概念之间的类比(例如,测试理想的理论,由正特征方法定义的各种奇异性,以及F纯阈值)和在复数上的代数几何中定义的概念(例如,乘子理想的理论,由几何方法定义的各种奇点,和对数正则阈值);以及许多相关的问题。 这些想法是在当代交换代数的前沿,这样一个大的和有声望的聚会创造了巨大的进展,对突出的问题和新的和有启发性的研究方向的发现的潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Melvin Hochster其他文献
Extensions of primes, flatness, and intersection flatness
素数、平坦度和相交平坦度的扩展
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Melvin Hochster;Jack Jeffries - 通讯作者:
Jack Jeffries
Melvin Hochster的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Melvin Hochster', 18)}}的其他基金
Studies in Commutative Algebra and Algebraic Geometry
交换代数和代数几何研究
- 批准号:
1902116 - 财政年份:2019
- 资助金额:
$ 4.92万 - 项目类别:
Continuing Grant
Studies in Commutative Algebra and Algebraic Geometry
交换代数和代数几何研究
- 批准号:
1401384 - 财政年份:2014
- 资助金额:
$ 4.92万 - 项目类别:
Continuing Grant
Studies in Commutative Algebra and Algebraic Geometry
交换代数和代数几何研究
- 批准号:
0901145 - 财政年份:2009
- 资助金额:
$ 4.92万 - 项目类别:
Continuing Grant
Homological Conjectures in Commutative Algebra: A Conference in Honor of Paul C. Roberts
交换代数中的同调猜想:纪念 Paul C. Roberts 的会议
- 批准号:
0555525 - 财政年份:2006
- 资助金额:
$ 4.92万 - 项目类别:
Standard Grant
Studies in Commutative Algebra and Algebraic Geometry
交换代数和代数几何研究
- 批准号:
0400633 - 财政年份:2004
- 资助金额:
$ 4.92万 - 项目类别:
Continuing Grant
Studies in Commutative Algebra and Algebraic Geometry
交换代数和代数几何研究
- 批准号:
9970702 - 财政年份:1999
- 资助金额:
$ 4.92万 - 项目类别:
Continuing Grant
Studies In Commutative Algebra & Algebraic Geometry
交换代数研究
- 批准号:
9401428 - 财政年份:1994
- 资助金额:
$ 4.92万 - 项目类别:
Continuing Grant
Mathematical Sciences: Studies in Commutative Algebra and Algebraic Geometry
数学科学:交换代数和代数几何研究
- 批准号:
8902390 - 财政年份:1989
- 资助金额:
$ 4.92万 - 项目类别:
Continuing Grant
Mathematical Sciences: Studies in Commutative Algebra and Algebraic Geometry
数学科学:交换代数和代数几何研究
- 批准号:
8600036 - 财政年份:1986
- 资助金额:
$ 4.92万 - 项目类别:
Continuing Grant
Mathematical Sciences: Commutative Rings and Algebraic Geometry
数学科学:交换环和代数几何
- 批准号:
8301241 - 财政年份:1983
- 资助金额:
$ 4.92万 - 项目类别:
Continuing Grant
相似海外基金
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
- 批准号:
2401360 - 财政年份:2024
- 资助金额:
$ 4.92万 - 项目类别:
Standard Grant
Development of a brand-new computer algebra system using Julia language and its application
Julia语言全新计算机代数系统的开发及其应用
- 批准号:
20K03537 - 财政年份:2020
- 资助金额:
$ 4.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Construction of quantum walk model in Max-plus algebra and its application
Max-plus代数中量子行走模型的构建及其应用
- 批准号:
20K14367 - 财政年份:2020
- 资助金额:
$ 4.92万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unified homological algebra encompassing exact, abelian, triangulated categories and its enhancement
包含精确、阿贝尔、三角范畴的统一同调代数及其增强
- 批准号:
20K03532 - 财政年份:2020
- 资助金额:
$ 4.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of linear solvers on max-plus algebra and its applications
max-plus代数线性求解器的开发及其应用
- 批准号:
19K03624 - 财政年份:2019
- 资助金额:
$ 4.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometric Algebra and its application in discrete geometry and topology
几何代数及其在离散几何和拓扑中的应用
- 批准号:
19F19721 - 财政年份:2019
- 资助金额:
$ 4.92万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Vector Space Model for Georefferenced Words' Algebra using Its Unevenness and Ubiquity
利用其不均匀性和普遍性的地理参考词代数向量空间模型
- 批准号:
19K11982 - 财政年份:2019
- 资助金额:
$ 4.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Summer Programs on Commutative Algebra and Its Interactions with Algebraic Geometry and on p-adic L-functions and Eigenvarieties
交换代数及其与代数几何的相互作用以及 p 进 L 函数和特征向量暑期课程
- 批准号:
1904501 - 财政年份:2019
- 资助金额:
$ 4.92万 - 项目类别:
Continuing Grant
Computer algebra based methods for hypergeometric functions in some variables and its applications
基于计算机代数的某些变量超几何函数的方法及其应用
- 批准号:
17K05292 - 财政年份:2017
- 资助金额:
$ 4.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Flag Algebra and Its Applications
合作研究:标记代数及其应用
- 批准号:
1600483 - 财政年份:2016
- 资助金额:
$ 4.92万 - 项目类别:
Standard Grant